Aspects of data science surround us in many contexts, for example regarding climate change, air pollution, and other environmental issues. To open the “data-science-black-box” for lower secondary school students we developed a data science project focussing on the analysis of self-collected environmental data. We embed this project in computer science education, which enables us to use a new knowledge-based programming approach for the data analysis within Jupyter Notebooks and the programming language Python. In this paper, we evaluate the second cycle of this project which took place in a ninth-grade computer science class. In particular, we present how the students coped with the professional tool of Jupyter Notebooks for doing statistical investigations and which insights they gained.
We report on our work with students in our data science courses, focusing on the analysis of students’ results. This study represents an in-depth analysis of students’ creation and documentation of machine learning models. The students were supported by educationally designed Jupyter Notebooks, which are used as worked examples. Using the worked example, students document their results in a so-called computational essay. We examine which aspects of creating computational essays are difficult for students to find out how worked examples should be designed to support students without being too prescriptive. We analyze the computational essays produced by students and draw consequences for redesigning our worked example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.