BackgroundIn recent years, next generation high throughput sequencing technologies have proven to be useful tools for investigations concerning the genomics or transcriptomics also of non-model species. Consequently, ornithologists have adopted these technologies and the respective bioinformatics tools to survey the genomes and transcriptomes of a few avian non-model species. The Common Blackbird is one of the most common bird species living in European cities, which has successfully colonized urban areas and for which no reference genome or transcriptome is publicly available. However, to target questions like genome wide gene expression analysis, a reference genome or transcriptome is needed.MethodsTherefore, in this study two Common Blackbirds were sacrificed, their mRNA was isolated and analyzed by RNA-Seq to de novo assemble a transcriptome and characterize it. Illumina reads (125 bp paired-end) and a Velvet/Oases pipeline led to 162,158 transcripts. For the annotation (using Blast+), an unfiltered protein database was used. SNPs were identified using SAMtools and BCFtools. Furthermore, mRNA from three single tissues (brain, heart and liver) of the same two Common Blackbirds were sequenced by Illumina (75 bp single-end reads). The draft transcriptome and the three single tissues were compared by their BLAST hits with the package VennDiagram in R.ResultsFollowing the annotation against protein databases, we found evidence for 15,580 genes in the transcriptome (all well characterized hits after annotation). On 18% of the assembled transcripts, 144,742 SNPs were identified which are, consequently, 0.09% of all nucleotides in the assembled transcriptome. In the transcriptome and in the single tissues (brain, heart and liver), 10,182 shared genes were found.DiscussionUsing a next-generation technology and bioinformatics tools, we made a first step towards the genomic investigation of the Common Blackbird. The de novo assembled transcriptome is usable for downstream analyses such as differential gene expression analysis and SNP identification. This study shows the importance of the approach to sequence single tissues to understand functions of tissues, proteins and the phenotype.
BackgroundBoth frequency and intensity of flood events are expected to increase as a result of global climate change in the upcoming decades, potentially resulting in increased re-suspension of sediments in fluvial systems. Contamination of these re-suspended sediments with legacy contaminants, including dioxins and dioxin-like compounds (DLCs), as well as polycyclic aromatic hydrocarbons (PAHs) is of great ecotoxicological concern. DLCs, and to some extent also PAHs, exhibit their toxicity through activation of the aryl hydrocarbon receptor (AhR). However, interactions of DLCs with pathways other than those known to be mediated through the AhR are not fully understood to date.MethodsThis study aimed to investigate molecular and biochemical effects in roach (Rutilus rutilus) during a 10 days exposure to suspensions of three natural sediments that differed in the level of DLC contamination. Concentrations of biliary PAH metabolites and hepatic 7-ethoxyresorufin-O-deethylase activity were quantified in exposed fish. Furthermore, the abundance of transcripts of several genes related to energy metabolism, response to oxidative stress, and apoptosis, as well as cytochrome P450 1A (cyp1a) was quantified.ResultsBiliary PAH metabolites and activation of the AhR were confirmed as suitable early warning biomarkers of exposure to suspended sediments containing DLCs and PAHs that corresponded well with analytically determined concentrations of those contaminants. Although the abundances of transcripts of superoxide dismutase (sod), protein kinase c delta (pkcd), and ATP-binding cassette transporter c9 (abcc9) were altered by the treatment compared with unexposed control fish, none of these showed a time- or concentration-dependent response. The abundance of transcripts of pyruvate carboxylase (pc) and transferrin variant d (tfd) remained unaltered by the treatments.ConclusionsWe have shown that contaminated sediments can become a risk for fish during re-suspension events (e.g., flooding and dredging). We have also demonstrated that roach, which are native to most European freshwater systems, are suitable sentinel species due to their great sensitivity and ecological relevance. Roach may be particularly suitable in future field studies to assess the toxicological concerns associated with the release of DLCs and PAHs during sediment re-suspension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.