This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (> 3σ ) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.
Aims. The formation process of multiple populations in globular clusters is still up for debate. These populations are characterized by different light-element abundances. Kinematic differences between the populations are particularly interesting in this respect, because they allow us to distinguish between single-epoch formation scenarios and multi-epoch formation scenarios. We derive rotation and dispersion profiles for 25 globular clusters and aim to find kinematic differences between multiple populations in 21 of them to constrain the formation process. Methods. We split red-giant branch (RGB) stars in each cluster into three populations (P1, P2, P3) for the type-II clusters and two populations (P1 and P2) otherwise using Hubble photometry. We derive the global rotation and dispersion profiles for each cluster by using all stars with radial velocity measurements obtained from MUSE spectroscopy. We also derive these profiles for the individual populations of each cluster. Based on the rotation and dispersion profiles, we calculate the rotation strength in terms of ordered-overrandom motion (v/σ) HL evaluated at the half-light radius of the cluster. We then consistently analyse all clusters for differences in the rotation strength of their populations. Results. We detect rotation in all but four clusters.
We present a Python-based framework for the complete operation of a robotic telescope observatory. It provides out-of-the-box support for many popular camera types while other hardware like telescopes, domes, and weather stations can easily be added via a thin abstraction layer to existing code. Common functionality like focusing, acquisition, auto-guiding, sky-flat acquisition, and pipeline calibration are ready for use. A remote-control interface, a “mastermind” for truly robotic operations as well as an interface to the Las Cumbres Observatory observation portal is included. The whole system is fully configurable and easily extendable. We are currently running pyobs successfully on three different types of telescopes, of which one is a siderostat for observing the Sun. pyobs uses open standards and open software wherever possible and is itself freely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.