Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.
Extreme-ultraviolet to x-ray free-electron lasers (FELs) in operation for scientific applications are up to now single-user facilities. While most FELs generate around 100 photon pulses per second, FLASH at DESY can deliver almost two orders of magnitude more pulses in this time span due to its superconducting accelerator technology. This makes the facility a prime candidate to realize the next step in FELs-dividing the electron pulse trains into several FEL lines and delivering photon pulses to several users at the same time. Hence, FLASH has been extended with a second undulator line and self-amplified spontaneous emission (SASE) is demonstrated in both FELs simultaneously. FLASH can now deliver MHz pulse trains to two user experiments in parallel with individually selected photon beam characteristics. First results of the capabilities of this extension are shown with emphasis on independent variation of wavelength, repetition rate, and photon pulse length.
The accelerator R&D facility SINBAD (Short Innovative Bunches and Accelerators at DESY) will drive multiple independent experiments in the fields of production of ultra-short electron bunches and tests of advanced high gradient acceleration concepts.
The SINBAD-ARES (Accelerator Research Experiment at SINBAD) linac has been designed to allow the production of high brightness ultra-short electron bunches with excellent arrival-time stability. The accelerator will be used to study experimentally the optimization of the brightness for fs long electron bunches. Such electron bunches, with tunable characteristics, will be then injected into novel accelerators realized in the context of the ATHENA project, the ACHIP international collaboration and the ARIES program. In this paper we describe the principal characteristics of the linac design, we underline the technical challenges connected to the production and characterization of fs bunches and we report on the status of the installation and commissioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.