Electrical impedance tomography (EIT) is a functional imaging modality capable of tracing continuously regional pulmonary gas volume changes. The aim of our study was to determine if EIT was able to assess spatial and temporal heterogeneity of ventilation during pulmonary function testing in 14 young (37 ± 10 yr, mean age ± SD) and 12 elderly (71 ± 9 yr) subjects without lung disease and in 33 patients with chronic obstructive pulmonary disease (71 ± 9 yr). EIT and spirometry examinations were performed during tidal breathing and a forced vital capacity (FVC) maneuver preceded by full inspiration to total lung capacity. Regional inspiratory vital capacity (IVC); FVC; forced expiratory volume in 1 s (FEV(1)); FEV(1)/FVC; times required to expire 25%, 50%, 75%, and 90% of FVC (t(25), t(50), t(75), t(90)); and tidal volume (V(T)) were determined in 912 EIT image pixels in the chest cross section. Coefficients of variation (CV) were calculated from all pixel values of IVC, FVC, FEV(1), and V(T) to characterize the ventilation heterogeneity. The highest values were found in patients, and no differences existed between the healthy young and elderly subjects. Receiver-operating characteristics curves showed that CV of regional IVC, FVC, FEV(1), and V(T) discriminated the young and elderly subjects from the patients. Frequency distributions of pixel FEV(1)/FVC, t(25), t(50), t(75), and t(90) identified the highest ventilation heterogeneity in patients but distinguished also the healthy young from the elderly subjects. These results indicate that EIT may provide additional information during pulmonary function testing and identify pathologic and age-related spatial and temporal heterogeneity of regional lung function.
The measurement of regional lung ventilation by electrical impedance tomography (EIT) has been evaluated in many experimental studies. However, EIT is not routinely used in a clinical setting, which is attributable to the fact that a convenient concept for how to quantify the EIT data is missing. The definition of region of interest (ROI) is an essential point in the data analysis. To date, there are only limited data available on the different approaches to ROI definition to evaluate regional lung ventilation by EIT. For this survey we examined ten patients (mean age +/- SD: 60 +/- 10 years) under controlled ventilation. Regional tidal volumes were quantified as pixel values of inspiratory-to-expiratory impedance differences and four types of ROIs were subsequently applied. The definition of ROI contours was based on the calculation of the pixel values of (1) standard deviation from each pixel set of impedance data and (2) the regression coefficient from linear regression equations between the individual local (pixel) and average (whole scan) impedance signals. Additionally, arbitrary ROIs (four quadrants and four anteroposterior segments of equal height) were used. Our results indicate that both approaches to ROI definition using statistical parameters are suitable when impedance signals with high sensitivity to ventilation-related phenomena are to be analyzed. The definition of the ROI contour as 20-35% of the maximum standard deviation or regression coefficient is recommended. Simple segmental ROIs are less convenient because of the low ventilation-related signal component in the dorsal region.
We conclude that regional EIT ventilation findings are reproducible and recommend that the EIT examination location on the chest is carefully chosen especially during repeated measurements and follow-up.
Background: Electrical impedance tomography (EIT) is able to detect variations in regional lung electrical impedance associated with changes in both air and blood content and potentially capable of assessing regional ventilation-perfusion relationships. However, regional lung perfusion is difficult to determine because the impedance changes synchronous with the heart rate are of very small amplitude. Objectives: The aim of our study was to determine the redistribution of lung perfusion elicited by one-lung ventilation using EIT with a novel region-of-interest analysis. Methods: Ten patients (65 ± 9 years, mean age ± SD) scheduled for elective chest surgery were studied after intubation with a double-lumen endotracheal tube during bilateral and unilateral ventilation of the right and left lungs. EIT data were acquired at a rate of 25 scans/s. Relative impedance changes synchronous with the heart rate were evaluated in the right and left lung regions. Results: During bilateral ventilation, the mean right-to-left lung ratio of the sum of heart rate-related impedance changes was 1.12 ± 0.20, but the ratio significantly changed (0.81 ± 0.16 and 1.48 ± 0.37) during unilateral left- and right-lung ventilation with reduced perfusion of the non-ventilated lung. Increased perfusion most likely occurred in the ventilated lung because the impedance values summed over both regions did not change (0.62 ± 0.23 vs. 0.58 ± 0.22) compared with bilateral ventilation. Conclusions: Our results indicate that redistribution of regional lung perfusion can be assessed by EIT during one-lung ventilation. The performance of EIT in detecting changes in lung perfusion in even smaller lung regions remains to be established.
BackgroundThe electrical impedance tomography (EIT)-based global inhomogeneity (GI) index was introduced to quantify tidal volume distribution within the lung. Up to now, the GI index was evaluated for plausibility but the analysis of how it is influenced by various physiological factors is still missing. The aim of our study was to evaluate the influence of proportion of open lung regions measured by EIT on the GI index.MethodsA constant low-flow inflation maneuver was performed in 18 acute respiratory distress syndrome (ARDS) patients (58 ± 14 years, mean age ± SD) and 8 lung-healthy patients (41 ± 12 years) under controlled mechanical ventilation. EIT raw data were acquired at 25 scans/s and reconstructed offline. Recruited lung regions were identified as those image pixels of the lung regions within the EIT scans where local impedance amplitudes exceeded 10% of the maximum amplitude during the maneuver. A series of GI indices was calculated during mechanical lung inflation, based on the differential images obtained between different time points. Respiratory system elastance (Ers) values were calculated at 10 lung volume levels during low-flow maneuver.ResultsThe GI index decreased during low-flow inflation, while the percentage of open lung regions increased. The values correlated highly in both ARDS (r2 = 0.88 ± 0.08, p < 0.01) and lung-healthy patients (r2 = 0.92 ± 0.05, p < 0.01). Ers and GI index were also significantly correlated in 16 out of 18 ARDS (r2 = 0.84 ± 0.13, p < 0.01) and in 6 out of 8 lung-healthy patients (r2 = 0.84 ± 0.07, p < 0.01). Significant differences were found in GI values between two groups (0.52 ± 0.21 for ARDS and 0.41 ± 0.04 for lung-healthy patients, p < 0.05) as well in Ers values (0.017 ± 0.008 cmH2O/ml for ARDS and 0.009 ± 0.001 cmH2O/ml for lung-healthy patients, p < 0.01).ConclusionsWe conclude that the GI index is a reliable measure of ventilation heterogeneity highly correlated with lung recruitability measured with EIT. The GI index may prove to be a useful EIT-based index to guide ventilation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.