Quantum‐dot‐sensitized solar cells (QDSCs) are a promising low‐cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low‐cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid‐state hole conductors are borrowed from standard dye‐sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono‐ and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy‐level alignment to increase the light to electric power conversion efficiency.
Molecular modification of dye-sensitized, mesoporous TiO2 electrodes changes their electronic properties. We show that the open-circuit voltage (V(oc)) of dye-sensitized solar cells varies linearly with the dipole moment of coadsorbed phosphonic, benzoic, and dicarboxylic acid derivatives. A similar dependence is observed for the short-circuit current density (I(sc)). Photovoltage spectroscopy measurements show a shift of the signal onset as a function of dipole moment. We explain the dipole dependence of the V(oc) in terms of a TiO2 conduction band shift with respect to the redox potential of the electrolyte, which is partially followed by the energy level of the dye. The I(sc) shift is explained by a dipole-dependent driving force for the electron current and a dipole-dependent recombination current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.