The use of 3d metals in de-/hydrogenation catalysis has emerged as a competitive field with respect to 'traditional' precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as conceptual starting point for rational catalyst design. This reviews aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Formic acid (FA) is an attractive compound for H2 storage. Currently, the most active catalysts for FA dehydrogenation use precious metals. Here, we report a homogeneous iron catalyst that, when used with a Lewis acid (LA) co-catalyst, gives approximately 1,000,000 turnovers for FA dehydrogenation. To date, this is the highest turnover number reported for a first-row transition metal catalyst. Preliminary studies suggest that the LA assists in the decarboxylation of a key iron formate intermediate and can also be used to enhance the reverse process of CO2 hydrogenation.
The catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane, MeNH(2)·BH(3) (7), to yield the soluble, high molecular weight poly(N-methylaminoborane) (8a), [MeNH-BH(2)](n) (M(W) > 20 000), has been achieved at 20 °C using Brookhart's Ir(III) pincer complex IrH(2)POCOP (5) (POCOP = [μ(3)-1,3-(OPtBu(2))(2)C(6)H(3)]) as a catalyst. The analogous reaction with ammonia-borane, NH(3)·BH(3) (4), gave an insoluble product, [NH(2)-BH(2)](n) (8d), but copolymerization with MeNH(2)·BH(3) gave soluble random copolymers, [MeNH-BH(2)](n)-r-[NH(2)-BH(2)](m) (8b and 8c). The structures of polyaminoborane 8a and copolymers 8b and 8c were further analyzed by ultrahigh resolution electrospray mass spectrometry (ESI-MS), and 8a, together with insoluble homopolymer 8d, was also characterized by (11)B and (1)H solid-state NMR, IR, and wide-angle X-ray scattering (WAXS). The data indicate that 8a-8c are essentially linear, high molecular weight materials and that the insoluble polyaminoborane 8d possesses a similar structure but is of lower molecular weight (ca. 20 repeat units), presumably due to premature precipitation during its formation. The yield and molecular weight of polymer 8a was found to be relatively robust toward the influence of different temperatures, solvents, and adduct concentrations, while higher catalyst loadings led to higher molecular weight materials. It was therefore unexpected that the polymerization of 7 using 5 was found to be a chain-growth rather than a step-growth process, where high molecular weights were already attained at about 40% conversion of 7. The results obtained are consistent with a two stage polymerization mechanism where, first, the Ir catalyst 5 dehydrogenates 7 to afford the monomer MeNH═BH(2) and, second, the same catalyst effects the subsequent polymerization of this species. A wide range of other catalysts based on Ru, Rh, and Pd were also found to be effective for the transformation of 7 to polyaminoborane 8a. For example, polyaminoborane 8a was even isolated from the initial stage of the dehydrocoupling/dehydrogenation of 7 with [Rh(μ-Cl)(1,5-cod)](2) (2) as the catalyst at 20 °C, a reaction reported to give the N,N,N-trimethyl borazine, [MeN-BH](3), under different conditions (dimethoxyethane, 45 °C). The ability to use a variety of catalysts to prepare polyaminoboranes suggests that the synthetic strategy should be applicable to a broad range of amine-borane precursors and is a promising development for this new class of inorganic polymers.
Acceptorless dehydrogenation of alcohols, an important organic transformation, was accomplished with welldefined and inexpensive iron-based catalysts supported by a cooperating PNP pincer ligand. Benzylic and aliphatic secondary alcohols were dehydrogenated to the corresponding ketones in good isolated yields upon release of dihydrogen. Primary alcohols were dehydrogenated to esters and lactones, respectively. Mixed primary/secondary diols were oxidized at the secondary alcohol moiety with good chemoselectivity. The mechanism of the reaction was investigated using both experiment and DFT calculations, and the crucial role of metal−ligand cooperativity in the reaction was elucidated. The iron complexes are also excellent catalysts for the hydrogenation of challenging ketone substrates at ambient temperature under mild H 2 pressure, the reverse of secondary alcohol dehydrogenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.