The fabrication of highly reflective aluminum coatings is still an important part of current research due to their high intrinsic reflectivity in a broad spectral range. By using thin seed layers of Cu, CuOx, Cr, CrOx, Au, and Ag, the morphology of sputtered (unprotected) aluminum layers and, consequently, their reflectance can be influenced. In this long-term study, the reflectance behavior was measured continuously using spectrophotometry. Particular seed layer materials enhance the reflectance of aluminum coatings significantly and reduce their long-term degradation. Combining such seed layers with evaporation processes and suitable protective layers could further increase the reflectance of aluminum coatings.
Copper and gold films with thicknesses between approximately 10 and 60 nm have been prepared by electron beam evaporation and characterized by spectrophotometry from the near infrared up to the near ultraviolet spectral regions. From near normal incidence transmission and reflection spectra, dispersion of optical constants have been determined by means of spectra fits utilizing a merger of the Drude model and the beta-distributed oscillator model. All spectra could be fitted in the full spectral region with a total of seven dispersion parameters. The obtained Drude damping parameters shows a clear trend to increase with decreasing film thickness. This behavior is discussed in the context of additional non-optical characterization results and turned out to be consistent with a simple mean-free path theory.
We present a systematic approach to calculating the reflectance of aluminum thin films. In our approach, the rough aluminum surface is modelled as a square array of submicrometer-sized oblate cylinders. The focus of the study is on the vacuum ultraviolet (VUV) spectral range, with wavelengths ranging from 120 nm to 200 nm. The VUV reflectance of aluminum films is calculated by using the rigorous coupled wave approach in order to take the surface roughness of aluminum into account. The modelled reflectance spectra are compared to experimental data from unprotected and protected aluminum films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.