This work employs Fourier transform ion cyclotron resonance (FT-ICR) and the Gaussian quantum chemistry composite methods W1 and G2 to experimentally and computationally analyze gas-phase basicities (GB) for a series of weak bases in the basicity region around and below water. The study aims to clarify the long-standing discrepancy between reported GB values for weak bases obtained via high-pressure mass spectrometry (HPMS) and ICR; the ICR scale is observed to be more than 2 times contracted compared to the HPMS scale. The computational results of this work support published HPMS data. This agreement improves with increasing sophistication of the computational method and is excellent at the W1 level. Several equilibria were also re-examined experimentally using FT-ICR. In the experiments with some polyfluorinated weak bases (hexafluoro-2-propanol and nonafluoro-2-methyl-2-propanol), it was found that two protonation processes compete in the gas phase: protonation on oxygen and protonation on fluorine. In these species, protonation on fluorine proceeds faster and is statistically favored over protonation on oxygen but leads to cations that are thermodynamically less stable than oxygen-protonated cations. The process may also lead to the irreversible loss of HF. The rearrangement of fluorine-protonated cations to oxygen-protonated cations is very slow and is further suppressed by the process of HF abstraction. These results at least partially explain the discrepancy between published HPMS data and earlier FT-ICR findings and call for the utmost care in using FT-ICR for gas-phase basicity measurements of heavily fluorinated compounds. The narrower dynamic range of ICR necessitates the measurement of several problematic bases and produces some differences between the ICR results in the present work and the published HPMS data; the wider dynamic range allows HPMS to overcome these difficulties in connecting the ladder.
A concerted theoretical (density-functional theory) and experimental electrospray mass spectrometry study was conducted on the formation of cesium cation adducts with small molecules taken as models of specific interactions sites in humic substances. Electrospray experiments with phenol, benzoic acid, salicylic acid, and phthalic acid, in methanolic solution containing cesium nitrate, were performed using a quadrupole ion trap. The formation of positively charged mixed clusters, [Cs(CsNO3)(n)(CsA1)(m)(Cs2A2)(p)]+ (A1 = benzoate, salicylate, and hydrogenophthalate, A2 = phthalate), was observed. Calculations of structures and bonding energetics of Cs+ in simple adducts formed with NO3-, CsNO3, A-, AH, and CsA are reported. The observation of variable cluster stoichiometry (n, m and p values) was interpreted in terms of more or less favorable interaction energies between Cs+ and the neutral species constituting the clusters. Phenol did not form clusters in significant abundances, despite a strong calculated interaction between Cs+ and cesium phenolate. This was attributed to its weak acid dissociation in the electrospray solution.
The gas-phase cesium cation affinities (CsCAs) and basicities (CsCBs) for 56 simple neutral compounds (mostly aromatic molecules) and 41 anions (carboxylates and phenolates) were calculated using density functional theory (DFT), in the context of the interaction of Cs(+) with soil organic matter (SOM). The B3LYP/def2-TZVP method gives in general CsCAs and CsCBs in a good agreement with experimental data. The strong deviations in case of NO(3)(-) and CsSO(4)(-) anions need further experimental investigations as the high-level CCSD(T) calculations support B3LYP results. Different cesium cation complexation patterns between Cs(+) and the neutral and anionic systems are discussed. As expected, the strongest CsCAs are observed for anions. The corresponding quantities are approximately by 4-5 times higher than for the neutral counterparts, being in the range 90-118 kcal/mol. The weakest cesium cation bonding is observed in the case of unsubstituted aromatic systems (11-15 kcal/mol).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.