In the following paper, we present an industry perspective of inertial sensors for navigation purposes driven by applications and customer needs. Microelectromechanical system (MEMS) inertial sensors have revolutionized consumer, automotive, and industrial applications and they have started to fulfill the high end tactical grade performance requirements of hybrid navigation systems on a series production scale. The Fiber Optic Gyroscope (FOG) technology, on the other hand, is further pushed into the near navigation grade performance region and beyond. Each technology has its special pros and cons making it more or less suitable for specific applications. In our overview paper, we present latest improvements at NG LITEF in tactical and navigation grade MEMS accelerometers, MEMS gyroscopes, and Fiber Optic Gyroscopes, based on our long-term experience in the field. We demonstrate how accelerometer performance has improved by switching from wet etching to deep reactive ion etching (DRIE) technology. For MEMS gyroscopes, we show that better than 1°/h series production devices are within reach, and for FOGs we present how limitations in noise performance were overcome by signal processing. The paper also intends a comparison of the different technologies, emphasizing suitability for different navigation applications, thus providing guidance to system engineers.
Computerized image analysis of biological cells and tissues is a necessary complement to high-throughput microscopy, allowing researchers to effectively analyze large volumes of cellular data. It has the potential to dramatically improve the throughput and accuracy of measurements and related downstream analyses that may be obtained from images. This study presents a novel workflow for automated analysis of fluorescence microscopy images, which benefits from running multiple segmentation workflows and combining them to produce the best final segmentation. It is tested using a dataset of 42 fluorescence microscopy cells, evaluated against a hand segmented dataset using the F 1 score, and critically compared to a single segmentation workflow, which served as a control. The accuracy and reliability of the novel workflow are demonstrated to be superior to the control workflow, which achieved F 1 scores of 0.845 and 0.608, respectively. The workflow and example code are available through an open-source software platform.
Understanding commuters’ behavior and influencing factors becomes more and more important every day. With the steady increase of the number of commuters, commuter traffic becomes a major bottleneck for many cities. Commuter behavior consequently plays an increasingly important role in city and transport planning and policy making. Although prior studies investigated a variety of potential factors influencing commuting decisions, most of them are constrained by the data scale in terms of limited time duration, space and number of commuters under investigation, largely owing to their dependence on questionnaires or survey panel data; as such only small sets of features can be explored and no predictions of commuter numbers have been made, to the best of our knowledge. To fill this gap, we collected inter-city commuting data in Germany between 1994 and 2018, and, along with other data sources, analyzed the influence of GDP, housing and the labor market on the decision to commute. Our analysis suggests that the access to employment opportunities, housing price, income and the distribution of the location’s industry sectors are important factors in commuting decisions. In addition, different age, gender and income groups have different commuting patterns. We employed several machine learning algorithms to predict the commuter number using the identified related features with reasonably good accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.