It is becoming increasingly clear that nature uses RNAs extensively for regulating vital functions of the cell, and short sequences are frequently used to suppress gene expression. However, controlling the concentration of small molecules intracellularly through designed RNA sequences that fold into ligand-binding structures is difficult. The development of "endless", a triplex-based folding motif that can be expressed in mammalian cells and binds the second messenger 3',5'-cyclic guanosine monophosphate (cGMP), is described. In vitro, DNA or RNA versions of endless show low micromolar to nanomolar dissociation constants for cGMP. To test its functionality in vivo, four endless RNA motifs arranged in tandem were co-expressed with a fluorescent cGMP sensor protein in murine vascular smooth muscle cells. Nitric oxide induced endogenous cGMP signals were suppressed in endless-expressing cells compared to cells expressing a control motif, which suggests that endless can act as a genetically encoded cGMP sink to modulate signal transduction in cells.
Triplexes with a gap in the purine strand have been shown to bind adenosine or guanosine derivatives through a combination of Watson-Crick and Hoogsteen base pairing. Rigidifying the binding site should be advantageous for affinity. Here we report that clamps delimiting the binding site have a modest effect on affinity, while bridging the gap of the purine strand can strongly increase affinity for ATP, cAMP, and FAD. The lowest dissociation constants were measured for two-strand triple helical motifs with a propylene bridge or an abasic nucleoside analog, with Kd values as low as 30 nM for cAMP in the latter case. Taken together, our data suggest that improving preorganization through covalent bridges increases the affinity for nucleotide ligands. But, a bulky bridge may also block one of two alternative binding modes for the adenine base. The results may help to design new receptors, switches, or storage motifs for purine-containing ligands.
Cofactors are critical for energy-consuming processes in the cell. Harnessing such processes for practical applications requires control over the concentration of cofactors. We have recently shown that DNA triplex motifs with a designed binding site can be used to capture and release nucleotides with low micromolar dissociation constants. In order to increase the storage capacity of such triplex motifs, we have explored the limits of ligand binding through designed cavities in the oligopurine tract. Oligonucleotides with up to six non-nucleotide bridges between purines were synthesized and their ability to bind ATP, cAMP or FAD was measured. Triplex motifs with several single-nucleotide binding sites were found to bind purines more tightly than triplexes with one large binding site. The optimized triplex consists of 59 residues and four C3-bridges. It can bind up to four equivalents of ligand with apparent Kd values of 52 µM for ATP, 9 µM for FAD, and 2 µM for cAMP. An immobilized version fuels bioluminescence via release of ATP at body temperature. These results show that motifs for high-density capture, storage and release of energy-rich biomolecules can be constructed from synthetic DNA.
It is becoming increasingly clear that nature uses RNAs extensively for regulating vital functions of the cell, and short sequences are frequently used to suppress gene expression. However, controlling the concentration of small molecules intracellularly through designed RNA sequences that fold into ligand‐binding structures is difficult. The development of “endless”, a triplex‐based folding motif that can be expressed in mammalian cells and binds the second messenger 3′,5′‐cyclic guanosine monophosphate (cGMP), is described. In vitro, DNA or RNA versions of endless show low micromolar to nanomolar dissociation constants for cGMP. To test its functionality in vivo, four endless RNA motifs arranged in tandem were co‐expressed with a fluorescent cGMP sensor protein in murine vascular smooth muscle cells. Nitric oxide induced endogenous cGMP signals were suppressed in endless‐expressing cells compared to cells expressing a control motif, which suggests that endless can act as a genetically encoded cGMP sink to modulate signal transduction in cells.
Invited for the cover of this issue are Sven Vollmer and Clemens Richert of the University of Stuttgart. The cover image hints at the analogy between a honey comb, as a macroscopic storage device, and DNA triplexes with designed binding sites, as molecular storage motifs that can release ATP to fuel a bioluminescence reaction. Read the full text of the article at 10.1002/chem.201503220.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.