Background-The molecular mechanisms by which physical training improves peripheral and coronary artery disease are poorly understood. Bone marrow-derived endothelial progenitor cells (EPCs) are thought to exert beneficial effects on atherosclerosis, angiogenesis, and vascular repair. Methods and Results-To study the effect of physical activity on the bone marrow, EPCs were quantified by fluorescence-activated cell sorter analysis in mice randomized to running wheels (5.1Ϯ0.8 km/d, nϭ12 to 16 per group) or no running wheel. Numbers of EPCs circulating in the peripheral blood of trained mice were enhanced to 267Ϯ19%, 289Ϯ22%, and 280Ϯ25% of control levels after 7, 14, and 28 days, respectively, accompanied by a similar increase of EPCs in the bone marrow and EPCs expanded from spleen-derived mononuclear cells. eNOS Ϫ/Ϫ mice and wild-type mice treated with N G -nitro-L-arginine methyl ester showed lower EPC numbers at baseline and a significantly attenuated increase of EPC in response to physical activity. Exercise NO dependently increased serum levels of vascular endothelial growth factor and reduced the rate of apoptosis in spleen-derived EPCs. Running inhibited neointima formation after carotid artery injury by 22Ϯ2%. Neoangiogenesis, as assessed in a subcutaneous disc model, was increased by 41Ϯ16% compared with controls. In patients with stable coronary artery disease (nϭ19), moderate exercise training for 28 days led to a significant increase in circulating EPCs and reduced EPC apoptosis. Conclusions-Physical activity increases the production and circulating numbers of EPCs via a partially NO-dependent, antiapoptotic effect that could potentially underlie exercise-related beneficial effects on cardiovascular diseases.
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) may exert direct effects on vascular cells and beneficially influence endothelial dysfunction. Because reactive oxygen species (ROS) may lead to vascular damage and dysfunction, we investigated the effect of atorvastatin on ROS production and the underlying mechanisms in vitro and in vivo. Cultured rat aortic vascular smooth muscle cells were incubated with 10 micromol/L atorvastatin. Angiotensin II-induced and epidermal growth factor-induced ROS production were significantly reduced by atorvastatin (dichlorofluorescein fluorescence laser microscopy). Atorvastatin downregulated mRNA expression of the NAD(P)H oxidase subunit nox1, whereas p22phox mRNA expression was not significantly altered (reverse transcription-polymerase chain reaction, Northern analysis). Membrane translocation of rac1 GTPase, which is required for the activation of NAD(P)H oxidase, was inhibited by atorvastatin (Western blot). mRNA expression of superoxide dismutase isoforms and glutathione peroxidase was not modified by atorvastatin, whereas catalase expression was upregulated at mRNA and protein levels, resulting in an increased enzymatic activity. Effects of atorvastatin on ROS production and nox1, rac1, and catalase expression were inhibited by L-mevalonate but not by 25-hydroxycholesterol. In addition, spontaneously hypertensive rats were treated with atorvastatin for 30 days. ROS production in aortic segments was significantly reduced in statin-treated rats (lucigenin chemiluminescence). Treatment with atorvastatin reduced vascular mRNA expression of p22phox and nox1 and increased aortic catalase expression. mRNA expression of superoxide dismutases, glutathione peroxidase, and NAD(P)H oxidase subunits gp91phox, p40phox, p47phox, and p67phox remained unchanged. Translocation of rac1 from the cytosol to the cell membrane was also reduced in vivo. Thus, atorvastatin exerts cellular antioxidant effects in cultured rat vascular smooth muscle cells and in the vasculature of spontaneously hypertensive rats mediated by decreased expression of essential NAD(P)H oxidase subunits and by upregulation of catalase expression. These effects of atorvastatin may contribute to the vasoprotective effects of statins.
Abstract-Angiotensin II type 1 (AT 1 ) receptor activation as well as proinflammatory cytokines such as interleukin-6 (IL-6) are involved in the development and progression of atherosclerosis. The detailed underlying mechanisms including interactions between inflammatory agonists and the renin-angiotensin system are poorly understood. Stimulation of cultured rat aortic vascular smooth muscle cells (VSMCs) with IL-6 led to upregulation of AT 1 receptor mRNA and protein expression, as assessed by Northern and Western blot experiments. Nuclear run-on and transcription blockade experiments showed that IL-6 increases AT 1 receptor mRNA de novo synthesis but not mRNA stability. Preincubation of VSMCs with IL-6 resulted in an enhanced angiotensin II-induced production of reactive oxygen species, as assessed by DCF fluorescence laser microscopy. Treatment of C57BL/6J mice with IL-6 for 18 days increased vascular AT 1 receptor expression (real-time RT-PCR) and angiotensin II-induced vasoconstriction, enhanced vascular superoxide production (L-012 chemiluminescence, DHE fluorescence), and impaired endothelium-dependent vasodilatation. These effects were completely omitted in AT 1 receptor knockout mice (AT1A Ϫ/Ϫ mice). Upregulation of vascular AT 1 receptor expression in vitro and in vivo is decisively involved in IL-6 -induced propagation of oxidative stress and endothelial dysfunction. This interaction of the proinflammatory cytokine IL-6 with the renin-angiotensin system may represent an important pathogenetic mechanism in the atherosclerotic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.