The launch of seed development in flowering plants (angiosperms) is initiated by the process of double fertilization: two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to form the precursor cells of the two major seed components, the embryo and endosperm, respectively. The immobile sperm cells are delivered by the pollen tube toward the ovule harboring the female gametophyte by species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst inside the female gametophyte, the two sperm cells fuse with the egg and central cell initiating seed development. The fertilized central cell forms the endosperm while the fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter structure connects the embryo with the sporophytic maternal tissues of the developing seed. The underlying mechanisms of double fertilization are tightly regulated to ensure delivery of functional sperm cells and the formation of both, a functional zygote and endosperm. In this review we will discuss the current state of knowledge about the processes of directed pollen tube growth and its communication with the synergid cells resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry (polyspermy) to maximize their reproductive success.
Plants are sessile and therefore exposed to a number of biotic and abiotic stresses. Drought is the major abiotic stress restricting plant growth worldwide. A number of genes involved in drought stress response have already been characterized, mainly in the model species Arabidopsis thaliana and Oryza sativa. However, with the aim to produce drought tolerant crop varieties, it is of importance to identify the respective orthologs for each species. We have developed DroughtDB, a manually curated compilation of molecularly characterized genes that are involved in drought stress response. DroughtDB includes information about the originally identified gene, its physiological and/or molecular function and mutant phenotypes and provides detailed information about computed orthologous genes in nine model and crop plant species including maize and barley. All identified orthologs are interlinked with the respective reference entry in MIPS/PGSB PlantsDB, which allows retrieval of additional information like genome context and sequence information. Thus, DroughtDB is a valuable resource and information tool for researchers working on drought stress and will facilitate the identification, analysis and characterization of genes involved in drought stress tolerance in agriculturally important crop plants.Database URL: http://pgsb.helmholtz-muenchen.de/droughtdb/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.