Background: Air embolism (AE), especially when affecting the brain, is an underrated and potentially life-threatening complication in various endovascular interventions. This study aims to investigate experimental AEs using a new model to generate micro air bubbles (MAB), to assess the impact of a catheter on these MAB, and to demonstrate the applicability of this model in vivo. Materials and Methods: Micro air bubbles were created using a system based on microfluidic channels. The MAB were detected and analyzed automatically. Micro air bubbles, with a target size of 85 µm, were generated and injected through a microcatheter. The MAB diameters proximal and distal to the catheter were assessed and compared. In a subsequent in vivo application, 2000 MAB were injected into the aorta (at the aortic valve) and into the common carotid artery (CCA) of a rat, respectively, using a microcatheter, resembling AE occurring during cardiovascular interventions. Results: Micro air bubbles with a highly calibrated size could be successfully generated (median: 85.5 µm, SD 1.9 µm). After passage of the microcatheter, the MAB were similar in diameter (median: 86.6 µm) but at a lower number (60.1% of the injected MAB) and a substantially higher scattering of diameters (SD 29.6 µm). In vivo injection of MAB into the aorta resulted in cerebral microinfarctions in both hemispheres, whereas injection into the CCA caused exclusively ipsilateral microinfarctions. Conclusion: Using this new AE model, MAB can be generated precisely and reproducibly, resulting in cerebral microinfarctions. This model is feasible for further studies on the pathophysiology and prevention of AE in cardiovascular procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.