Abstract. The correct modeling of default dependence is essential for the valuation of portfolio credit derivatives. However, for the pricing of synthetic CDOs a one-factor Gaussian copula model with constant and equal pairwise correlations for all assets in the reference portfolio has become the standard market model. If this model were a reflection of market opinion there wouldn't be the implied correlation smile that is observed in the market. The purpose of this paper is to derive a correlation structure from observed CDO tranche spreads. The correlation structure is chosen such that all tranche spreads of the traded CDO can be reproduced. This implied correlation structure can then be used to price off-market tranches with the same underlying as the traded CDO. Using this approach we can significantly reduce the risk to misprice offmarket derivatives. Due to the complexity of the optimization problem we apply Evolutionary Algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.