ObjectiveDiabetes and low back pain are debilitating diseases and modern epidemics. Diabetes and obesity are also highly correlated with intervertebral disc (IVD) degeneration and back pain. Advanced-glycation-end-products (AGEs) increase reactive-oxygen-species (ROS) and inflammation, and are one cause for early development of diabetes mellitus. We hypothesize that diabetes results in accumulation of AGEs in spines and associated spinal pathology via increased catabolism. We present a mouse model showing that: 1) diabetes induces pathological changes to structure and composition of IVDs and vertebrae; 2) diabetes is associated with accumulation of AGEs, TNFα, and increased catabolism spinal structures; and 3) oral-treatments with a combination of anti-inflammatory and anti-AGE drugs mitigate these diabetes-induced degenerative changes to the spine.MethodsThree age-matched groups of ROP-Os mice were compared: non-diabetic, diabetic (streptozotocin (STZ)-induced), or diabetic mice treated with pentosan-polysulfate (anti-inflammatory) and pyridoxamine (AGE-inhibitor). Mice were euthanized and vertebra-IVD segments were analyzed by μCT, histology and Immunohistochemistry.ResultsDiabetic mice exhibited several pathological changes including loss in IVD height, decreased vertebral bone mass, decreased glycosaminoglycan content and morphologically altered IVDs with focal deposition of tissues highly expressing TNFα, MMP-13 and ADAMTS-5. Accumulation of larger amounts of methylglyoxal suggested that AGE accumulation was associated with these diabetic degenerative changes. However, treatment prevented or reduced these pathological effects on vertebrae and IVD.ConclusionThis is the first study to demonstrate specific degenerative changes to nucleus pulposus (NP) morphology and their association with AGE accumulation in a diabetic mouse model. Furthermore, this is the first study to demonstrate that oral-treatments can inhibit AGE-induced ROS and inflammation in spinal structures and provide a potential treatment to slow progression of degenerative spine changes in diabetes. Since diabetes, IVD degeneration, and accumulation of AGEs are frequent consequences of aging, early treatments to reduce AGE-induced ROS and Inflammation may have broad public-health implications.
Annulus fibrosus (AF) defects from annular tears, herniation, and discectomy procedures are associated with painful conditions and accelerated intervertebral disc (IVD) degeneration. Currently, no effective treatments exist to repair AF damage, restore IVD biomechanics and promote tissue regeneration. An injectable fibrin-genipin adhesive hydrogel (Fib-Gen) was evaluated for its performance repairing large AF defects in a bovine caudal IVD model using ex vivo organ culture and biomechanical testing of motion segments, and for its in vivo longevity and biocompatibility in a rat model by subcutaneous implantation. Fib-Gen sealed AF defects, prevented IVD height loss, and remained well-integrated with native AF tissue following approximately 14,000 cycles of compression in 6-day organ culture experiments. Fib-Gen repair also retained high viability of native AF cells near the repair site, reduced nitric oxide released to the media, and showed evidence of AF cell migration into the gel. Biomechanically, Fib-Gen fully restored compressive stiffness to intact levels validating organ culture findings. However, only partial restoration of tensile and torsional stiffness was obtained, suggesting opportunities to enhance this formulation. Subcutaneous implantation results, when compared with the literature, suggested Fib-Gen exhibited similar biocompatibility behaviour to fibrin alone but degraded much more slowly. We conclude that injectable Fib-Gen successfully sealed large AF defects, promoted functional restoration with improved motion segment biomechanics, and served as a biocompatible adhesive biomaterial that had greatly enhanced in vivo longevity compared to fibrin. Fib-Gen offers promise for AF repairs that may prevent painful conditions and accelerated degeneration of the IVD, and warrants further material development and evaluation.
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of “smart” biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User
We have demonstrated for the first time that degenerative conditions induce the release of factors promoting BMSC recruitment in an ex vivo organ culture. Moreover, IGF-1 transduction of BMSCs strongly increases the rate of proteoglycan synthesis within degenerative discs. This finding offers a new delivery system for BMSCs and treatment strategy for IVD regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.