Snail family transcription factors are expressed in various stem cell types, but their function in maintaining stem cell identity is unclear. In the adult Drosophila midgut, the Snail homolog Esg is expressed in intestinal stem cells (ISCs) and their transient undifferentiated daughters, termed enteroblasts (EB). We demonstrate here that loss of esg in these progenitor cells causes their rapid differentiation into enterocytes (EC) or entero-endocrine cells (EE). Conversely, forced expression of Esg in intestinal progenitor cells blocks differentiation, locking ISCs in a stem cell state. Cell type-specific transcriptome analysis combined with Dam-ID binding studies identified Esg as a major repressor of differentiation genes in stem and progenitor cells. One critical target of Esg was found to be the POU-domain transcription factor, Pdm1, which is normally expressed specifically in differentiated ECs. Ectopic expression of Pdm1 in progenitor cells was sufficient to drive their differentiation into ECs. Hence, Esg is a critical stem cell determinant that maintains stemness by repressing differentiation-promoting factors, such as Pdm1.
Objective. Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease. Both twin and sibling studies indicate a strong genetic contribution to lupus, but in the majority of cases the pathogenic variant remains to be identified. The genetic contribution to disease is likely to be greatest in cases with early onset and severe phenotypes. Whole-exome sequencing now offers the possibility of identifying rare alleles responsible for disease in such cases. This study was undertaken to identify genetic causes of SLE using whole-exome sequencing.Methods. We performed whole-exome sequencing in a 4-year-old girl with early-onset SLE and conducted biochemical analysis of the putative defect.Results. Whole-exome sequencing in a 4-year-old girl with cerebral lupus identified a rare, homozygous mutation in the three prime repair exonuclease 1 gene (TREX1) that was predicted to be highly deleterious. The TREX1 R97H mutant protein had a 20-fold reduction in exonuclease activity and was associated with an elevated interferon-␣ (IFN␣) signature in the patient. The discovery and characterization of a pathogenic TREX1 variant in our proband has therapeutic implications. The patient is now a candidate for neutralizing anti-IFN␣ therapy.Conclusion. Our study is the first to demonstrate that whole-exome sequencing can be used to identify rare or novel deleterious variants as genetic causes of SLE and, through a personalized approach, improve therapeutic options.
Tumors are infiltrated by cells of the immune system that interact through complex regulatory networks. Although tumor-specific CD8 C T cells can be found in peripheral blood and tumor samples from cancer patients, their function is inhibited by immunosuppressive cells such as regulatory T cells, tumorassociated macrophages, and myeloid-derived suppressor cells (MDSC). Recent clinical successes have demonstrated that alleviating immunosuppression and T cell exhaustion translates into long-term clinical benefits. Although tremendous progress has been achieved, tools that afford unbiased approaches and screenings to uncover new potential inhibitors or gene targets are lacking. In this study, we describe a system based on immortalized progenitors that allows straightforward investigation of myeloid cells. We show that bone marrow progenitors immortalized through the transduction of NUP98-HOXB4 transgene can be differentiated into CD11b C Gr-1 C MDSC that express Arginase-1 and PD-L1, produce reactive oxygen and nitrogen species, and suppress T cell function in vitro. To uncover chemical probes that interfere with MDSC biology, we performed a chemical phenotypic screening and identified 3-deazaneplanocin A as a novel modulator of MDSC functions. We characterized and compared the effect of 3-deazaneplanocin-A and all-trans retinoic acid, a well-known modulator of MDSC activity, on the expression of effector molecules and immunosuppressive functions of MDSC. Altogether, this proof-ofprinciple opens new possibilities for the identification of drugs targeting myeloid cells with immunosuppressive activities.
The suppressive microenvironment of tumors remains one of the limiting factors for immunotherapies. In tumors, the function of effector T cells can be inhibited by cancer cells as well as myeloid cells including tumor associated macrophages and myeloid-derived suppressor cells (MDSC). A better understanding of how myeloid cells inhibit T cell function will guide the design of therapeutic strategies to increase anti-tumor responses. We have previously reported the in vitro differentiation of MDSC from immortalized mouse hematopoietic progenitors and characterized the impact of retinoic acid and 3-deazaneplanocin A on MDSC development and function. We describe here the effect of these compounds on MDSC transcriptome and identify genes and pathway affected by the treatment. In order to accelerate the investigation of gene function in MDSC suppressive activity, we developed protocols for CRISPR/Cas9-mediated gene editing in MDSC. Through screening of 217 genes, we found that autocrine secretion of TNF-α contributes to MDSC immunosuppressive activity through up-regulation of Nos2. The approach described here affords the investigation of gene function in myeloid cells such as MDSC with unprecedented ease and throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.