Cortical microstructural abnormalities are associated with clinical and cognitive deterioration in multiple sclerosis. Using diffusion tensor MRI, a higher fractional anisotropy has been found in cortical lesions versus normal-appearing cortex in multiple sclerosis. The pathological substrates of this finding have yet to be definitively elucidated. By performing a combined post-mortem diffusion tensor MRI and histopathology study, we aimed to define the histopathological substrates of diffusivity abnormalities in multiple sclerosis cortex. Sixteen subjects with multiple sclerosis and 10 age- and sex-matched non-neurological control donors underwent post-mortem in situ at 3 T MRI, followed by brain dissection. One hundred and ten paraffin-embedded tissue blocks (54 from multiple sclerosis patients, 56 from non-neurological controls) were matched to the diffusion tensor sequence to obtain regional diffusivity measures. Using immunohistochemistry and silver staining, cortical density of myelin, microglia, astrocytes and axons, and density and volume of neurons and glial cells were evaluated. Correlates of diffusivity abnormalities with histological markers were assessed through linear mixed-effects models. Cortical lesions (77% subpial) were found in 27/54 (50%) multiple sclerosis cortical regions. Multiple sclerosis normal-appearing cortex had a significantly lower fractional anisotropy compared to cortex from non-neurological controls (P = 0.047), whereas fractional anisotropy in demyelinated cortex was significantly higher than in multiple sclerosis normal-appearing cortex (P = 0.012) but not different from non-neurological control cortex (P = 0.420). Compared to non-neurological control cortex, both multiple sclerosis normal-appearing and demyelinated cortices showed a lower density of axons perpendicular to the cortical surface (P = 0.012 for both) and of total axons (parallel and perpendicular to cortical surface) (P = 0.028 and 0.012). In multiple sclerosis, demyelinated cortex had a lower density of myelin (P = 0.004), parallel (P = 0.018) and total axons (P = 0.029) versus normal-appearing cortex. Regarding the pathological substrate, in non-neurological controls, cortical fractional anisotropy was positively associated with density of perpendicular, parallel, and total axons (P = 0.031 for all). In multiple sclerosis, normal-appearing cortex fractional anisotropy was positively associated with perpendicular and total axon density (P = 0.031 for both), while associations with myelin, glial and total cells and parallel axons did not survive multiple comparison correction. Demyelinated cortex fractional anisotropy was positively associated with density of neurons, and total cells and negatively with microglia density, without surviving multiple comparison correction. Our results suggest that a reduction of perpendicular axons in normal-appearing cortex and of both perpendicular and parallel axons in demyelinated cortex may underlie the substrate influencing cortical microstructural coherence and being responsible for the different patterns of fractional anisotropy changes occurring in multiple sclerosis cortex.
Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.