N1-[(5' '-O-Phosphorylethoxy)methyl]-5'-O-phosphorylinosine 5',5''-cyclicpyrophosphate (cIDPRE 2a) and the 8-substituted derivatives 8-bromo-, 8-azido-, 8-amino-, and 8-Cl-cIDPRE (2b-e) were synthesized from N1-[(5''-acetoxyethoxy)methyl]-2',3'-O-isopropylideneinosine (5) in good yields. The pharmacological activities of cIDPRE and the 8-substituted derivatives (2a-e) were analyzed in intact and permeabilized human Jurkat T-lymphocytes. The results indicate that cIDPRE permeates the plasma membrane, releases Ca2+ from an intracellular, cADPR-sensitive Ca2+ store, and subsequently initiates Ca2+ release-activated Ca2+ entry. The Ca(2+)-releasing activity of cIDPRE was confirmed directly in permeabilized cells. Using time-resolved confocal Ca2+ imaging at the single cell level, the development of global Ca2+ signals starting from local small Ca2+ signals evoked by cIDPRE was observed. 8-N3-cIDPRE 2c and 8-NH2-cIDPRE 2d were similarly effective in their agonistic activity as compared to cIDPRE 2a, showing almost indistinguishable concentration-response curves for 2a, 2c, and 2d and very similar kinetics of Ca2+ signaling. In contrast, the halogenated derivatives 8-Br- and 8-Cl-cIDPRE (2b and 2e) did not significantly elevate [Ca2+]i. Therefore, cIDPRE 2a, 8-N3-cIDPRE 2c, and 8-NH2-cIDPRE 2d are novel membrane permeant cADPR mimic and may provide important novel tools to study cADPR-mediated Ca2+ signaling in intact cells.
In Jurkat T cells, the type 3 ryanodine receptor (RyR) was knocked-down by stable integration of plasmid expressing type 3 ryanodine receptor antisense RNA.
Ca 2ϩ signaling by ligation of the T cell receptor (TCR)/CD31 complex is a complicated process involving the formation and breakdown of the second messengers D-myo-inositol 1,4,5-trisphosphate (IP 3 ) and cyclic adenosine diphosphoribose (cADPR) in a temporally coordinated fashion (1-3). In addition to IP 3 and cADPR, nicotinic acid adenine dinucleotide phosphate (NAADP) is an essential regulator of T cell Ca 2ϩ signaling (4), although the exact role of this nucleotide has not yet been clarified. Jurkat T cells preincubated with the specific, membrane-permeant cADPR antagonist 7-deaza-8-Br-cADPR (5) showed characteristic defects in the onset and in the longlasting phase of TCR/CD3-and  1 -integrin-mediated Ca 2ϩ signaling (2, 6). In addition, in peripheral human T cells, 7-deaza-8-Br-cADPR efficiently blocked expression of the activation antigens CD25 and MHCII and blocked proliferation upon CD3
We previously developed cyclic ADP-carbocyclic ribose (cADPcR, 2) as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. A series of the N1-ribose modified cADPcR analogues, designed as novel stable mimics of cADPR, which were the 2"-deoxy analogue 3, the 3"-deoxy analogue 4, the 3"-deoxy-2"-O-(methoxymethyl) analogue 5, the 3"-O-methyl analogue 6, the 2",3"-dideoxy analogue 7, and the 2",3"-dideoxydidehydro analogue 8, were successfully synthesized using the key intramolecular condensation reaction with phenylthiophosphate-type substrates. We investigated the conformations of these analogues and of cADPR and found that steric repulsion between both the adenine and N9-ribose moieties and between the adenine and N1-ribose moieties was a determinant of the conformation. The Ca(2+)-mobilizing effects were evaluated systematically using three different biological systems, i.e., sea urchin eggs, NG108-15 neuronal cells, and Jurkat T-lymphocytes. The relative potency of Ca(2+)-mobilization by these cADPR analogues varies depending on the cell-type used: e.g., 3"-deoxy-cADPcR (4) > cADPcR (2) > cADPR (1) in sea urchin eggs; cADPR (1) >> cADPcR (2) approximately 3"-deoxy-cADPcR (4) in T-cells; and cADPcR (2) > cADPR (1) > 3"-deoxy-cADPcR (4) in neuronal cells, respectively. These indicated that the target proteins and/or the mechanism of action of cADPR in sea urchin eggs, T-cells, and neuronal cells are different. Thus, this study represents an entry to cell-type selective cADPR analogues, which can be used as biological tools and/or novel drug leads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.