We present a semiautomatic real-time pipeline for capturing and rendering free-viewpoint video using passive stereo matching. The pipeline is simple and achieves agreeable quality in real time on a system of commodity web cameras and a single desktop computer. We suggest an automatic algorithm to compute a constrained search space for an efficient and robust hierarchical stereo reconstruction algorithm. Due to our fast reconstruction times, we can eliminate the need for an expensive global surface reconstruction with a combination of high coverage and aggressive filtering. Finally, we employ a novel color weighting scheme that generates credible new viewpoints without noticeable seams, while keeping the computational complexity low. The simplicity and low cost of the system make it an accessible and more practical alternative for many applications compared to previous methods.
Figure 1:We introduce an efficient encoding of time-varying binary voxel data, the temporal DAG, which we use as the geometric representation for free viewpoint video. The geometry of this sequence consists of 70 frames of voxel data at a spatial resolution of 2048 3 . Encoded as a temporal DAG, the memory consumption is only 1.86 MBytes. The top row of images shows three different time steps from a single novel viewpoint, and the bottom row shows four additional views of the second time step. The geometry is visualized with ambient occlusion and with colors reconstructed from four color rgb-camera streams.
AbstractWe encode time-varying voxel data for efficient storage and streaming. We store the equivalent of a separate sparse voxel octree for each frame, but utilize both spatial and temporal coherence to reduce the amount of memory needed. We represent the time-varying voxel data in a single directed acyclic graph with one root per time step. In this graph, we avoid storing identical regions by keeping one unique instance and pointing to that from several parents. We further reduce the memory consumption of the graph by minimizing the number of bits per pointer and encoding the result into a dense bitstream.
We present a novel way of approaching image-based 3D reconstruction based on radiance fields. The problem of volumetric reconstruction is formulated as a non-linear least-squares problem and solved explicitly without the use of neural networks. This enables the use of solvers with a higher rate of convergence than what is typically used for neural networks, and fewer iterations are required until convergence. The volume is represented using a grid of voxels, with the scene surrounded by a hierarchy of environment maps. This makes it possible to get clean reconstructions of 360° scenes where the foreground and background is separated. A number of synthetic and real scenes from well-known benchmark-suites are successfully reconstructed with quality on par with state-of-the-art methods, but at significantly reduced reconstruction times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.