In this paper, we estimate efficiency of a conceivable Euro-Asian network of gravitational wave (GW) interferometers that might be realized having in mind a plan of construction of third generation interferometer in Novosibirsk region. Subsequently, some network would be composed, including four GW detectors. Among them there are the already active interferometers VIRGO (Italy) and KAGRA (Japan), Indian interferometer under construction—LIGO India and the interferometer in Siberia mentioned above. The quality of network in question is considered on the base of typical numerical criteria of efficiency for detecting GW signals of known structure—radiation of relativistic binary coalescence.
A Euro-Asian network of four gravitational-wave (GW) interferometers is considered, taking into account the plan to create such a detector in Novosibirsk. The efficiency of the network is assessed by typical numerical criteria, which also depend on the characteristics of the received signal. In this work, we calculate the optimal orientation of the Novosibirsk detector for the problem of detecting GW radiation accompanying the collapse of the progenitor star with an initial angular momentum. The specificity of the scenario is the presence of the so-called. bar stage deformation, for which the shape of the emitted GW signal is known.
The problem of joint data processing from ground-based gravitational and neutrino detectors is considered in order to increase the detection efficiency of collapsing objects in the Galaxy. The development of the “neutrino-gravitational correlation” algorithm is carried out within the framework of the theory of optimal filtration as applied to the well-known OGRAN and BUST facilities located at the BNO INR RAS. The experience of analyzing neutrino and gravitational data obtained during the outburst of supernova SN1987A is used. Sequential steps of the algorithm are presented; formulas for estimating the statistical efficiency of a two-channel recorder are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.