A genetic perspective of human history in Europe was derived from 22 binary markers of the nonrecombining Y chromosome (NRY). Ten lineages account for >95% of the 1007 European Y chromosomes studied. Geographic distribution and age estimates of alleles are compatible with two Paleolithic and one Neolithic migratory episode that have contributed to the modern European gene pool. A significant correlation between the NRY haplotype data and principal components based on 95 protein markers was observed, indicating the effectiveness of NRY binary polymorphisms in the characterization of human population composition and history.
Neither the pathogenesis nor the aetiology of Down's syndrome (DS) are clearly understood. Numerous studies have examined whether clinical features of DS are a consequence of specific chromosome 21 segments being triplicated. There is no evidence, however, that individual loci are responsible, or that the oxidative damage in DS could be solely explained by a gene dosage effect. Using astrocytes and neuronal cultures from DS fetuses, a recent paper shows that altered metabolism of the amyloid precursor protein and oxidative stress result from mitochondrial dysfunction.1 These findings are consistent with considerable data implicating the role of the mitochondrial genome in DS pathogenesis and aetiology.
The frequently observed familial aggregation of Down syndrome (DS) 47,+21 and other aneuploidies and the phenomenon of double aneuploidy involving DS cannot be accounted for by chance alone. To clarify possible aetiological factors, pedigrees from all 7 affected families with repeated marriages referred to two regional genetics centres were examined. In each case the recurrence of aneuploidy was on the mother's side (p<0.01). Such a pattern suggests cytoplasmic inheritance of a risk factor. The hypothesis that mitochondrial DNA mutations have a role in the aetiology of DS is supported by other observations as well as by theoretical considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.