The electrochemical behavior of as-cast AlxCoCrFeNiM (M = Ti, V, Si, Mn, Cu) high entropy alloys (HEAs) in 1 M NaCl and 0.5 M H2SO4 solutions is studied. Polarization measurements were carried out in a standard three-electrode electrochemical cell with a platinum auxiliary electrode using a P-30J potentiostat device. The potentials were measured relative to a saturated silver chloride reference electrode EVL-1M3 at room temperature (25 °C) with a sweep rate of 5 mV/s. It is shown that despite a wide passivation region, Al0.5CoCrFeNi1.6Ti0.7 HEA undergoes significant corrosion in both sodium chloride and sulfuric acid solutions and exhibits low corrosion potential and current density. Energy-dispersive X-ray spectroscopy (EDS) analysis revealed that Ti-containing eutectic areas are the most susceptible regions to corrosion. Intergranular corrosion was found in Al0.25CoCrFeNiMn and Al0.25CoCrFeNiCu HEAs. Moreover, Al0.25CoCrFeNiCu possesses the smallest passivation interval ΔE among all the investigated HEAs. For samples with Ti, Mn, and Cu, a protective film layer is not formed on the surface of the phases enriched in these elements, or it is brittle and crumbles. For samples with Si and V, a passivating film is formed. Thus, Al0.45CoCrFeNiSi0.45 and Al0.25CoCrFeNiV HEAs exhibited the highest resistance in 1 M NaCl and 0.5 M H2SO4 corrosive environments, respectively.
The electrochemical behavior of the as-cast Al0.5CoCrFeNiCuxAgy (x = 0.25, 0.5; y = 0, 0.1) high-entropy alloys (HEAs) in a 0.5M H2SO4 solution was studied. Polarization measurements were carried out in a standard three-electrode electrochemical cell at room temperature using a platinum counter electrode and a saturated silver chloride reference electrode. For Al0.5CoCrFeNiCu0.5 and Al0.5CoCrFeNiCu0.5Ag0.1, copper segregation along the grain boundaries was observed, which highly dissolved in the sulfuric acid solution and resulted in low corrosion resistance of the samples. Introducing Ag into Al0.5CoCrFeNiCu0.25 HEA led to the precipitation of a copper–silver eutectic structure, in which the copper regions were selectively dissolved in the sulfuric acid solution. Al0.5CoCrFeNiCu0.25 exhibited the best corrosion resistance with the corrosion current density of Icorr = 3.52 ± 0.02 μA/cm2, significantly superior to that of the Al0.5CoCrFeNi sample without copper and silver (Icorr = 6.05 ± 0.05 μA/cm2). Finally, the results indicated that suppressing elemental segregation by annealing or tailoring chemical composition is essential to improve the corrosion resistance of Al0.5CoCrFeNiCuxAgy HEAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.