Photocatalytic oxidation (PCO) of acrylonitrile (AN) on titanium dioxide in the gaseous phase was studied. AN readily undergoes photocatalytic degradation in a gas-solid system by using TiO(2) Degussa P25. The AN PCO volatile products, visible in the infrared spectra, included nitrogen dioxide, nitrous oxide, carbon dioxide, water, hydrogen cyanide and carbon monoxide. Longer contact time resulted in deeper oxidation of AN with decreasing hydrogen cyanide and increasing nitrogen dioxide content. The effect of temperature increasing from 60 to 130 degrees C was observed to be slightly negative in terms of AN degradation rate. However, the effect of increased temperature was noticeable in terms of the character and yields of the PCO products: HCN peaks diminished with growing peaks of NO(2).
The gaseous products of photocatalytic oxidation (PCO) of acrylonitrile on sulphated P25 in concentrations from 10 to 100 ppm at 60 to 130°C were CO 2 , HCN and HNCO. This photocatalyst showed disproportionally improved performance at higher temperature and longer retention times. The temperature-programmed oxidation (TPO) after PCO disclosed possible reaction routes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.