Implant-associated infections are the most costly problem in modern orthopedics due to the continued increase in the occurrence of antibiotic-resistant bacterial strains that requires the development of new effective antimicrobials. A non-randomized, prospective, open-label, with historical control study on the use of combined phage/antibiotic therapy of periprosthetic joint infection (PJI) was carried out. Forty-five adult patients with deep PJI of the hip joint were involved in the study, with a 12-month follow-up after one-stage revision surgery. Patients from a prospective study group (SG, n = 23) were treated with specific phage preparation and etiotropic antibiotics, whereas patients from a retrospective comparator group (CG, n = 22) received antibiotics only. The rate of PJI relapses in the SG was eight times less than that in the CG: one case (4.5%) versus eight cases (36.4%), p = 0.021. The response rate to treatment was 95.5% (95% confidence interval (CI) = 0.7511–0.9976) in the SG and only 63.6% (95% CI = 0.4083–0.8198) in the CG. The odds ratio for PJI relapse in patients of the SG was 0.083 (95% CI = 0.009–0.742), which was almost 12 times lower than that in the CG. The obtained results support the efficacy of the combined phage-antibiotic treatment of PJI.
Infectious complications after primary implantation of the hip joint are 0.5–3 %, and in the case of re-endoprosthetics, the risk of periprosthetic infection can reach 30 %. Also, we should not forget about the high percentage (16–20 %) of recurrence of periprosthetic infection of the hip joint, which leads to an unsatisfactory result of treatment up to amputation of a limb or even death of the patient. The reasons for the recurrence of the infectious process can be antibiotic resistance and antibiotic tolerance of microorganisms, as well as the ability of microorganisms to form biofilms on implants. In this regard, there is a constant need to search for alternative means of antimicrobial therapy, as well as to select the optimal ways of their delivery and deposition, which is of practical importance when performing surgical interventions in traumatology and orthopedics to protect the implantable structure from possible infection of the surgical site. One of the methods currently available to combat bacterial infections acquired antibiotic resistance and antibiotic tolerance is the use of natural viruses that infect bacterial bacteriophages. The above suggests a more effective suppression of periprosthetic infection, including persisters that deviate from antibiotics. It is, as a rule, associated with biofilms if used in conjunction with antibiotics and phages, when the use of bacteriophages predetermines the effectiveness of treatment. With the use of sensitive bacteriophages in the treatment of periprosthetic infections, a significant (p = 0.030) reduction in the rate of recurrence of infection (from 31 to 4.5 %) was observed. The use of lytic bacteriophages in traumatology and orthopedics is of great interest for phagotherapy of infections caused by antibiotic-resistant and biofilm-forming strains of bacteria. A clinical study using a single-stage surgical revision with simultaneous application of antibiotics and phages in the treatment of deep periprosthesis infection of the hip joint endoprosthesis, followed by 12 months follow-up for periprosthetic infection recurrence, demonstrated the effectiveness of the use of combined antibiotic and bacteriophages treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.