We present a parametric family of semi-implicit second order accurate numerical methods for non-conservative and conservative advection equation for which the numerical solutions can be obtained in a fixed number of forward and backward alternating substitutions. The methods use a novel combination of implicit and explicit time discretizations for one-dimensional case and the Strang splitting method in several dimensional case. The methods are described for advection equations with a continuous variable velocity that can change its sign inside of computational domain. The methods are unconditionally stable in the non-conservative case for variable velocity and for variable numerical parameter. Several numerical experiments confirm the advantages of presented methods including an involvement of differential programming to find optimized values of the variable numerical parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.