We present a mathematical model and provide an analysis of optical beam director systems composed of adaptive arrays of fiber collimators (subapertures), referred to here as conformal optical systems. Performances of the following two system architectures are compared: A conformal-beam director with mutually incoherent output laser beams transmitted through fiber collimators (beamlets), and a corresponding coherent system whose beamlets can be coherently combined (phase locked) at a remote target plane. The effect of the major characteristics of the conformal systems on the efficiency of laser beam projection is evaluated both analytically and through numerical simulations. The characteristics considered here are the number of fiber collimators and the subaperture and conformal aperture fill factors, as well as the accuracy of beamlet pointing.
Free-space laser communication offers an attractive alternative for transferring high-bandwidth data when fiber optic cable is neither practical nor feasible. However, there are a variety of deleterious features of the atmospheric channel that may lead to serious signal fading, and even the complete loss of signal altogether. Physical obstructions-such as birds, insects, tree limbs, or other factors-can temporarily or permanently block the laser line-of-sight. Platform/building motion due to wind, differential heating and cooling, or ground motion over time can result in serious misalignment of fixed-position laser communication systems. But most importantly of all, absorption and scattering due to particulate matter in the atmosphere may significantly decrease the transmitted optical signal, while random atmospheric distortions due to optical turbulence can severely degrade the wave-front quality of a signal-carrying laser beam, causing intensity fading and random signal losses at the receiver.
112Ricklin et al.
In the wave-optics numerical simulations of laser beam propagation in volume atmospheric turbulence, we observe irregular appearance of giant intensity spikes with amplitudes exceeding the diffraction-limited intensity value by a factor of ten or even more. The presence of giant spikes may explain the existing significant difference between the scintillation index theoretical prediction and the results obtained in numerical simulation and experimental measurements. The giant spikes' physics-based origin, probability of appearance, and impact on irradiance scintillation index are analyzed.
A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.