Representation, representativity, representativeness error, forward interpolation error, forward model error, observation-operator error, aggregation error and sampling error are all terms used to refer to components of observation error in the context of data assimilation. This article is an attempt to consolidate the terminology that has been used in the earth sciences literature and was suggested at a European Space Agency workshop held in Reading in April 2014. We review the state of the art and, through examples, motivate the terminology. In addition to a theoretical framework, examples from application areas of satellite data assimilation, ocean reanalysis and atmospheric chemistry data assimilation are provided. Diagnosing representation-error statistics as well as their use in state-of-the-art data assimilation systems is discussed within a consistent framework.
To improve our understanding of the role of phytoplankton for marine ecosystems and global biogeochemical cycles, information on the global distribution of major phytoplankton groups is essential. Although algorithms have been developed to assess phytoplankton diversity from space for over two decades, so far the application of these data sets has been limited. This scientific roadmap identifies user needs, summarizes the current state of the art, and pinpoints major gaps in long-term objectives to deliver space-derived phytoplankton diversity data that meets the user requirements. These major gaps in using ocean color to estimate phytoplankton community structure were identified as: (a) the mismatch between satellite, in situ and model data on phytoplankton composition, (b) the lack of quantitative uncertainty estimates provided with satellite data, (c) the spectral limitation of current sensors to enable the full exploitation of backscattered sunlight, and (d) the very limited applicability of satellite algorithms determining phytoplankton composition for regional, especially coastal or inland, waters. Recommendation for actions include but are not limited to: (i) an increased communication and round-robin exercises among and within the related expert groups, (ii) the launching of higher spectrally and spatially resolved sensors, (iii) the development of algorithms that exploit
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.