Summary The Arabidopsis transcription factor CRABS CLAW (CRC) is a major determinant of carpel growth and fusion, and, in concert with other redundantly acting genes, of floral meristem termination. Its rice ortholog, however, has additional functions in specifying carpel organ identity. We were interested in understanding the history of gene function modulation of CRC‐like genes during angiosperm evolution. Here, we report the identification and functional characterization of EcCRC, the Californica poppy (Eschscholzia californica) CRC ortholog. The downregulation of EcCRC by virus‐induced gene silencing (VIGS) produces additional organ whorls that develop exclusively into gynoecia, resulting in a reiteration of the fourth whorl. Additionally, defects in carpel polarity and ovule initiation are apparent, and the observed phenotype is restricted to the gynoecium. Our results further show that the history of CRC‐like genes during angiosperm evolution is characterized by gains of function, independent of duplication processes in this gene subfamily. Moreover, our data indicate that the ancestral angiosperm CRC‐like gene was involved in floral meristem termination and the promotion of abaxial cell fate in the gynoecium, and that in the lineage leading to Arabidopsis, additional genes have been recruited to adopt some of these functions, resulting in a high degree of redundancy.
The analysis of gene functions in non-model plant species is often hampered by the fact that stable genetic transformation to downregulate gene expression is laborious and time-consuming, or, for some species, even not achievable. Virus-induced gene silencing (VIGS) can serve as an alternative to mutant collections or stable transgenic plants to allow the characterization of gene functions in a wide range of angiosperm species, albeit in a transient way. VIGS vector systems have been developed from both RNA and DNA plant viral sources to specifically silence target genes in plants. VIGS is nowadays widely used in plant genetics for gene knockdown due to its ease of use and the short time required to generating phenotypes. Here, we summarize successfully targeted eudicot and monocot plant species along with their specific VIGS vector systems which are already available for researchers.
BackgroundThe floral homeotic C function gene AGAMOUS (AG) confers stamen and carpel identity and is involved in the regulation of floral meristem termination in Arabidopsis. Arabidopsis ag mutants show complete homeotic conversions of stamens into petals and carpels into sepals as well as indeterminacy of the floral meristem. Gene function analysis in model core eudicots and the monocots rice and maize suggest a conserved function for AG homologs in angiosperms. At the same time gene phylogenies reveal a complex history of gene duplications and repeated subfunctionalization of paralogs.ResultsEScaAG1 and EScaAG2, duplicate AG homologs in the basal eudicot Eschscholzia californica show a high degree of similarity in sequence and expression, although EScaAG2 expression is lower than EScaAG1 expression. Functional studies employing virus-induced gene silencing (VIGS) demonstrate that knock down of EScaAG1 and 2 function leads to homeotic conversion of stamens into petaloid structures and defects in floral meristem termination. However, carpels are transformed into petaloid organs rather than sepaloid structures. We also show that a reduction of EScaAG1 and EScaAG2 expression leads to significantly increased expression of a subset of floral homeotic B genes.ConclusionsThis work presents expression and functional analysis of the two basal eudicot AG homologs. The reduction of EScaAG1 and 2 functions results in the change of stamen to petal identity and a transformation of the central whorl organ identity from carpel into petal identity. Petal identity requires the presence of the floral homeotic B function and our results show that the expression of a subset of B function genes extends into the central whorl when the C function is reduced. We propose a model for the evolution of B function regulation by C function suggesting that the mode of B function gene regulation found in Eschscholzia is ancestral and the C-independent regulation as found in Arabidopsis is evolutionarily derived.
The products of B class floral homeotic genes specify petal and stamen identity, and loss of B function results in homeotic conversions of petals into sepals and stamens into carpels. Here, we describe the molecular characterization of seirena-1 (sei-1), a mutant from the basal eudicot California poppy (Eschscholzia californica) that shows homeotic changes characteristic of floral homeotic B class mutants. SEI has been previously described as EScaGLO, one of four B class-related MADS box genes in California poppy. The C terminus of SEI, including the highly conserved PI motif, is truncated in sei-1 proteins. Nevertheless, like the wild-type SEI protein, the sei-1 mutant protein is able to bind CArG-boxes and can form homodimers, heterodimers, and several higher order complexes with other MADS domain proteins. However, unlike the wild type, the mutant protein is not able to mediate higher order complexes consisting of specific B, C, and putative E class related proteins likely involved in specifying stamen identity. Within the PI motif, five highly conserved N-terminal amino acids are specifically required for this interaction. Several families lack this short conserved sequence, including the Brassicaceae, and we propose an evolutionary scenario to explain these functional differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.