The IR Biotyper is a new automated typing system based on Fourier-transform infrared (FT-IR) spectroscopy that gives results within 4 h. We aimed (i) to use the IR Biotyper to retrospectively analyze an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-KP) in a neonatal intensive care unit and to compare results to BOX-PCR and whole-genome sequencing (WGS) results as the gold standard and (ii) to assess how the cutoff values used to define clusters affect the discriminatory power of the IR Biotyper. The sample consisted of 18 isolates from 14 patients. Specimens were analyzed in the IR Biotyper using the default analysis settings, and spectra were analyzed using OPUS 7.5 software. The software contains a feature that automatically proposes a cutoff value to define clusters; the cutoff value defines up to which distance the spectra are considered to be in the same cluster. Based on FT-IR, the outbreak represented 1 dominant clone, 1 secondary clone, and several unrelated clones. FT-IR results, using the cutoff value generated by the accompanying software after 4 replicates, were concordant with WGS for all but 1 isolate. BOX-PCR was underdiscriminatory compared to the other two methods. Using the cutoff value generated after 12 replicates, the results of FT-IR and WGS were completely concordant. The IR Biotyper can achieve the same typeability and discriminatory power as genome-based methods. However, to attain this high performance requires either previous, strain-dependent knowledge about the optimal technical parameters to be used or validation by a second method.
cIn June 2010, a bla KPC -negative, ertapenem-resistant ST-258 Klebsiella pneumoniae strain was isolated from a patient in the Laniado Medical Center (LMC). Our aims were (i) to describe its molecular characteristics and resistance mechanisms and (ii) to assess whether the bla KPC -negative ST-258 K. pneumoniae clone spreads as efficiently as its KPC-producing isogenic strain. In a prospective study, surveillance of all ertapenem-resistant, carbapenemase-negative K. pneumoniae (
Background
Pseudomonas aeruginosa (PA) surveillance may improve empiric antimicrobial therapy, since colonizing strains frequently cause infections. This colonization may be ‘endogenous’ or ‘exogenous’, and the source determines infection control measures. We prospectively investigated the sources of PA, the clinical impact of PA colonization upon admission and the dynamics of colonization at different body sites throughout the intensive care unit stay.MethodsIntensive care patients were screened on admission and weekly from the pharynx, endotracheal aspirate, rectum and urine. Molecular typing was performed using Enterobacterial Repetitive Intergenic Consensus Polymerase Chain reaction (ERIC-PCR).ResultsBetween November 2014 and January 2015, 34 patients were included. Thirteen (38%) were colonized on admission, and were at a higher risk for PA-related clinical infection (Hazard Ratio = 14.6, p = 0.0002). Strains were often patient-specific, site-specific and site-persistent. Sixteen out of 17 (94%) clinical isolates were identical to strains found concurrently or previously on screening cultures from the same patient, and none were unique. Ventilator associated pneumonia-related strains were identical to endotracheal aspirates and pharynx screening (87–75% of cases). No clinical case was found among patients with repeated negative screening.ConclusionPA origin in this non-outbreak setting was mainly ‘endogenous’ and PA-strains were generally patient- and site-specific, especially in the gastrointestinal tract. While prediction of ventilator associated pneumonia-related PA-strain by screening was fair, the negative predictive value of screening was very high.
This study highlights two dissemination modes of the blaKPC gene: clonal spread of the CC-258 clone and, far less commonly, HGT-related spread, mediated by ST-15 plasmids that shuttle between a variety of species and clones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.