Yeast Single-Cell Proteins (SCP) production using various agro-industrial byproducts and wastes have significant potential as an alternative to the soy meal, and fish meal protein used for livestock and aquaculture feeds. The use of organic wastes as a substrate in the fermentation processes can be accepted as one of the solutions to reduce the total price of the culture and an environmentally friendlier method of removing these residues. This review article focuses on the yeast biomass yield and protein content increase strategies, which is impossible without understanding metabolic pathways and switching mechanisms. The present work discusses optimization strategies for protein-enriched yeast biomass production, such as fermentation medium composition, including a selection of carbon and nitrogen sources and their ratio, supplemented trace elements, and cultivation conditions such as pH, temperature, time of cultivation, and inoculum size. This review summarizes the theoretical knowledge and experimental results of other researchers that provide an overview of the achievements of the last decades in the production of SCP.
As humanity sets its sights on establishing a sustainable and prosperous colony on Mars, the main challenges to be overcome are ensuring a reliable and nutritious food supply for settlers, feedstock for 3D printing, fuel and pharmaceuticals. While various solutions for production of essential products on Mars have been proposed, there is growing interest in the use of microorganisms as the main production units. This scientific review article proposes a novel concept of using single cell oil (SCO) as a versatile feedstock for various applications in a bioregenerative life support system (BLSS) for space missions. The authors suggest using outputs from autotrophic systems, such as cyanobacteria biomass and oxygen, to cultivate SCO-producing microorganisms from the class Labyrinthulomycetes. The produced SCO can be used for food, fuel, 3D printing materials, and pharmaceuticals. This approach can potentially reduce the importance of carbohydrates in space foods, offering various benefits, including a reduction in food weight, simpler, lightweight, more compact bioreactors, launch cost reduction, potentially improved mental and cognitive performance, and reduced fatigue for the crew. The authors also suggest using SCO as the feedstock for the production of 3D printable filaments and resins and as a supplementary fuel source for space colonies. While the concept is hypothetical, the theoretical foundation is solid, and this approach could potentially become an important element required for the establishment of a successful Mars colony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.