Background: Plakophilin-2 (PKP2) is classically defined as a desmosomal protein. Mutations in PKP2 associate with most cases of gene-positive arrhythmogenic right ventricular cardiomyopathy. A better understanding of PKP2 cardiac biology can help elucidate the mechanisms underlying arrhythmic and cardiomyopathic events consequent to PKP2 deficiency. Here, we sought to capture early molecular/cellular events that can act as nascent arrhythmic/cardiomyopathic substrates. Methods: We used multiple imaging, biochemical and high-resolution mass spectrometry methods to study functional/structural properties of cells/tissues derived from cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mice (PKP2cKO) 14 days post-tamoxifen injection, a time point preceding overt electrical or structural phenotypes. Myocytes from right or left ventricular free wall were studied separately. Results: Most properties of PKP2cKO left ventricular myocytes were not different from control; in contrast, PKP2cKO right ventricular (RV) myocytes showed increased amplitude and duration of Ca 2+ transients, increased Ca 2+ in the cytoplasm and sarcoplasmic reticulum, increased frequency of spontaneous Ca 2+ release events (sparks) even at comparable sarcoplasmic reticulum load, and dynamic Ca 2+ accumulation in mitochondria. We also observed early- and delayed-after transients in RV myocytes and heightened susceptibility to arrhythmias in Langendorff-perfused hearts. In addition, ryanodine receptor 2 in PKP2cKO-RV cells presented enhanced Ca 2+ sensitivity and preferential phosphorylation in a domain known to modulate Ca 2+ gating. RNAseq at 14 days post-tamoxifen showed no relevant difference in transcript abundance between RV and left ventricle, neither in control nor in PKP2cKO cells. Instead, we found an RV-predominant increase in membrane permeability that can permit Ca 2+ entry into the cell. Connexin 43 ablation mitigated the membrane permeability increase, accumulation of cytoplasmic Ca 2+ , increased frequency of sparks and early stages of RV dysfunction. Connexin 43 hemichannel block with GAP19 normalized [Ca 2+ ] i homeostasis. Similarly, protein kinase C inhibition normalized spark frequency at comparable sarcoplasmic reticulum load levels. Conclusions: Loss of PKP2 creates an RV-predominant arrhythmogenic substrate (Ca 2+ dysregulation) that precedes the cardiomyopathy; this is, at least in part, mediated by a Connexin 43-dependent membrane conduit and repressed by protein kinase C inhibitors. Given that asymmetric Ca 2+ dysregulation precedes the cardiomyopathic stage, we speculate that abnormal Ca 2+ handling in RV myocytes can be a trigger for gross structural changes observed at a later stage.
Lipid-protein interactions, critical for the folding, stability and function of membrane proteins, can be both of mechanical and chemical nature. Mechanical properties of lipid systems can be suitably influenced by physical factors so as to facilitate membrane protein folding. We demonstrate here that by modulating lipid dynamics transiently using heat, rapid folding of two 8-stranded transmembrane β-barrel proteins OmpX and OmpA1–171, in micelles and vesicles, can be achieved within seconds. Folding kinetics using this ‘heat shock’ method shows a dramatic ten to several hundred folds increase in refolding rate along with ~100% folding efficiency. We establish that OmpX thus folded is highly thermostable even in detergent micelles, and retains structural characteristics comparable to the protein in bilayers.
Background: Human VDAC isoform 2 is crucial for apoptosis regulation and cell survival. Results: Cys-less mutant displays significantly lowered unfolding free energy despite greater barrel rigidity. Conclusion: Cysteine residues are key contributors of strong barrel-lipid interactions; hVDAC-2 also requires packing defects in the lipid system to remain stably refolded. Significance: Cys-mediated VDAC-2-lipid interactions may contribute to its anti-apoptotic function.
HIGHLIGHTS Outline of EGF dependent in-vivo phosphotyrosine signaling in lung tissue A peptide based screen identifies proteins recruited to regulated phosphotyrosine sites in lung tissue Several somatic mutations affect proline residues within position +3 of regulated phosphotyrosine sites and introduce molecular switches A lung cancer oncogenic mutation in EGFR causes aberrant activation of phosphorylation signaling pathways by switching of a recruited protein complex Cancer mutations in vicinity of phosphotyrosine sites induce molecular switches that alter protein signaling networks Introduction of cutting-edge LC-MS instrumentation and DIA enables scalable, rapid and highthroughput analysis of phosphotyrosine site interactions
Human voltage-dependent anion channel-2 (hVDAC-2) functions primarily as the crucial anti-apoptotic protein in the outer mitochondrial membrane, and additionally as a gated bidirectional metabolite transporter. The N-terminal helix (NTH), involved in voltage sensing, bears an additional 11-residue extension (NTE) only in hVDAC-2. In this study, we assign a unique role for the NTE as influencing the chaperone-independent refolding kinetics and overall thermodynamic stability of hVDAC-2. Our electrophysiology data shows that the N-helix is crucial for channel activity, whereas NTE sensitizes this isoform to voltage gating. Additionally, hVDAC-2 possesses the highest cysteine content, possibly for regulating reactive oxygen species content. We identify interdependent contributions of the N-helix and cysteines to channel function, and the measured stability in micellar environments with differing physicochemical properties. The evolutionary demand for the NTE in the presence of cysteines clearly emerges from our biochemical and functional studies, providing insight into factors that functionally demarcate hVDAC-2 from the other VDACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.