The goal of the research was to investigate the effect of dietary natural or biotic additives such as garlic, black pepper, and chili pepper powder in poultry nutrition on sustainable and economic efficiency of this type of production. A total of eight dietary treatments with 1200 broiler chickens of hybrid line Hubbard were formed, with four replicates. During the experimental period, chickens were fed with three period mixtures diets of different average costs: Starter compound mixture two weeks (0.38 €/kg in all treatments), grower compound mixture next three weeks (0.36, 0.38, 0.40, 0.41, 0.46, 0.39, 0.42, and 0.39 €/kg, respectively), and finisher compound mixture for the final week (0.34, 0.36, 0.38, 0.39, 0.44, 0.37, 0.40, and 0.37 €/kg, respectively). The experiment lasted a total of 42 days. Upon finishing the experiment, results have shown statistically significant (p < 0.05) differences regarding the European broiler index (EBI) as one of the indicators of economic efficacy. The EBI was lowest in the control treatment (220.4) and significantly higher in experimental treatments (298.6), respectively. In cost, a calculation included the cost of feed and used natural or biotic supplements in chicken nutrition. The findings of the study of economic efficiency revealed that the cost per treatment rises depends on the natural additive used. Economic efficiency analysis showed that the most economical natural additive with the lowest cost is garlic (0.68 €/kg), while the most uneconomical is treatment with black pepper with the highest cost of body weight gain (0.82 €/kg). This higher cost of the gained meat is minimal as a consequence of a much healthier and more nutritious food meant for human use, which often promotes sustainable aspects, compared to conventional and industrialized poultry production.
Aim of this paper work is analyzing the situation in the sector
The creation of salt-tolerant wheat genotypes can provide a basis for sustainable wheat production in areas that are particularly sensitive to the impacts of climate change on soil salinity. This study aimed to select salt-tolerant wheat genotypes that could serve as a genetic resource in breeding for salinity tolerance. A two-year experiment was established with 27 wheat genotypes, grown in salinity stress and non-stress conditions. Agronomic parameters (plant height, spike weight, number of grains per spike, thousand grain weight, and grain yield/plant) were analyzed in the phenophase of full maturity, while biochemical parameters (DPPH radical scavenging activity and total phenolic content) were tested in four phenophases. Grain yield/plant was the most sensitive parameter to salinity, with a 31.5% reduction in value. Selection based on salt tolerance indices (STI, MP, and GMP) favored the selection of the genotypes Renesansa, Harmonija, Orašanka, Bankut 1205, KG-58, and Jugoslavija. Based on YI (1.30) and stability analysis, the genotype Harmonija stands out as the most desirable genotype for cultivation in saline conditions. The presence of positive correlations between grain yield/plant and biochemical parameters, in all phenophases, enables the selection of genotypes with high antioxidant activity and high yield potential, even in the early stages of plant development.
A two-year field trial was conducted to study the effects of biohumus, biofertiliser, and soil conditioner application on spelt grain yield in different regions (plain, hilly, and mountainous regions) in Serbia. An analysis of economic efficiency indicators of spelt production in organic farming systems was also performed. The field experiment had a randomised complete block design with three replicates in each of the three regions. One winter spelt cultivar was also studied. The largest differences in spelt yield compared to control were found in the plain region in the biohumus + biofertiliser treatment (28.0%) and the hilly region in the organic fertiliser + zeolite treatment (28.8%). The differences in grain yield between control and treatment conditions in the mountain region were insignificant. Analysis of the economic effects of organic spelt production found a significantly lower gross margin in treatments with expensive organic fertilisers (3955.05 and 1104.75 € ha–1) than the control (5094.31 and 1833.85 € ha–1), leading to the conclusion that their application was not economically justified despite the increases in grain yield. The highest production costs (3569.71 € ha–1) were observed in treatments in the hilly region, resulting in the lowest benefit-cost ratio (0.1), while the greatest benefit-cost ratio was recorded in treatments in the mountainous region (2.1). Following the economic analysis results, a significant negative correlation between the benefit-cost ratio and the total production costs (r= –0.91**) was determined and a positive correlation between the gross margin and grain yield (r=0.66*). These results lead to the conclusion that the management strategy of spelt production in organic farming systems should be harmonised with the soil and agro-ecological characteristics of the region and directed at decreasing the costs and share of external inputs. In this case, organic spelt production can be economically profitable. Highlights - Organic fertilisers and soil conditioners affect spelt grain yield. - The analysis of the economic effects of organic spelt production concluded that fertiliser application was not economically justified despite the increases in grain yield. - Treatments in the plain region displayed the best production results compared to mountain region treatments, but these did not have the best benefit-cost ratio. - Knowledge of production costs is an important element in improving the economic efficiency of organic farming systems.
In limited growing conditions, intercropped field peas and oats can represent a significant source of forage rich in protein. If applied correctly, factors such as nitrogen fertilizer, the mowing phase, and sowing norms can significantly increase the productivity of these mixtures. Field trials were conducted to examine their productivity under different nitrogen levels (0, 40, 80 kg ha−1), different sowing norms/mixtures (field peas: oats—100:15%; 100:30%), and two stages of growth (full flowering, full pod formation). Nitrogen fertilizer and different sowing norms had a significant effect on the biomass, hay, and crude protein yields. On average, the highest hay yields were achieved with 80 kg ha−1 N (4.96 t ha−1), followed by 40 kg ha−1 N (4.27 t ha−1). The highest protein yields were achieved with 40 kg ha−1 N (CP—704.1 kg ha−1), followed by 80 kg ha−1 N (CP—637.6 kg ha−1). Sowing norm 100:30% achieved higher hay yields: 100:30%—4.82 t ha−1; 100:15%—4.44 t ha−1, while 100:15% achieved higher crude protein yields: 100:15%—730.4 kg ha−1; 100:30%—692.7 kg ha−1 on average. The costs were not significantly increased with the nitrogen fertilizer, but the net profits were increased by as much as 163%, depending on the nitrogen level and the mixture. Nitrogen fertilizer also achieves higher economic efficiency for the mixture 100:15% compared to the 100:30% mixture. Mixtures of field peas and oats outperform single-grown crops and provide cost-effective feed for a short time. Using optimal seed ratios and nitrogen fertilizer can significantly increase the productivity and profitability of the feed with minimal impact on the overall production costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.