Animal personalities range from individuals that are shy, cautious, and easily stressed (a “reactive” personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a “proactive” personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large- and small-brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large-brained animals were faster to habituate to, and more exploratory in, open field tests. Large-brained females were also bolder. Second, large-brained animals excreted less cortisol in a stressful situation (confinement). Third, large-brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large-brained lines. Overall, the results point toward a more proactive personality type in large-brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness-related aspects of ecology such as dispersal and niche exploration.
VPA exposure in early development causes molecular and neurochemical alterations in zebrafish, which persist into adulthood and accompany impaired sociability. These findings will highlight the possible involvement of the histaminergic system in outcomes related to neuropsychiatric disorders. Furthermore, it supports zebrafish as a tool to investigate mechanisms underlying these disorders.
Hypothalamic neurons expressing histamine and orexin/hypocretin (hcrt) are necessary for normal regulation of wakefulness. In Parkinson's disease, the loss of dopaminergic neurons is associated with elevated histamine levels and disrupted sleep/wake cycles, but the mechanism is not understood. To characterize the role of dopamine in the development of histamine neurons, we inhibited the translation of the two non-allelic forms of tyrosine hydroxylase (th1 and th2) in zebrafish larvae. We found that dopamine levels were reduced in both th1 and th2 knockdown, but the serotonin level and number of serotonin neurons remained unchanged. Further, we demonstrated that th2 knockdown increased histamine neuron number and histamine levels, whereas increased dopaminergic signaling using the dopamine precursor l-DOPA (l-3,4-dihydroxyphenylalanine) or dopamine receptor agonists reduced the number of histaminergic neurons. Increases in the number of histaminergic neurons were paralleled by matching increases in the numbers of hcrt neurons, supporting observations that histamine regulates hcrt neuron development. Finally, we show that histaminergic neurons surround th2-expressing neurons in the hypothalamus, and we suggest that dopamine regulates the terminal differentiation of histamine neurons via paracrine actions or direct synaptic neurotransmission. These results reveal a role for dopaminergic signaling in the regulation of neurotransmitter identity and a potential mechanism contributing to sleep disturbances in Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.