The paper presents a review of the studies that were conducted at Energy Systems Institute (ESI) SB RAS in the field of mathematical modeling of nonlinear input-output dynamic systems with Volterra polynomials. The first part presents an original approach to identification of the Volterra kernels. The approach is based on setting special multi-parameter families of piecewise constant test input signals. It also includes a description of the respective software; presents illustrative calculations on the example of a reference dynamic system as well as results of computer modeling of real heat exchange processes. The second part of the review is devoted to the Volterra polynomial equations of the first kind. Studies of such equations were pioneered and have been carried out in the past decade by the laboratory of ill-posed problems at ESI SB RAS. A special focus in the paper is made on the importance of the Lambert function for the theory of these equations.
The paper considers two types of Volterra integral equations of the first kind, arising in the study of inverse problems of the dynamics of controlled heat power systems. The main focus of the work is aimed at studying the specifics of the classes of Volterra equations of the first kind that arise when describing nonlinear dynamics using the apparatus of Volterra integro-power series. The subject area of the research is represented by a simulation model of a heat exchange unit element, which describes the change in enthalpy with arbitrary changes in fluid flow and heat supply. The numerical results of solving the problem of identification of transient characteristics are presented. They illustrate the fundamental importance of practical recommendations based on sufficient conditions for the solvability of linear multidimensional Volterra equations of the first kind. A new class of nonlinear systems of integro-algebraic equations of the first kind, related to the problem of automatic control of technical objects with vector inputs and outputs, is distinguished. For such systems, sufficient conditions are given for the existence of a unique, sufficiently smooth solution. A review of the literature on these problem types is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.