The nuclear DNA content for a group of 40 Malus species and hybrids has been estimated using flow cytometry. Estimates of nuclear DNA content for this germplasm collection range from 1.45 pg for Malus fusca (diploid) to 2.57 pg for Malus ioensis (triploid). Among diploids, the nuclear (2C) DNA ranges from 1.45 pg for M. fusca to 1.68 pg for Malus transitoria. Among triploids, the nuclear (3C) DNA content ranges from 2.37 pg / 3C for Malus sikkimensis to 2.57 pg / 3C for M. ioensis. Given the complexity of the apple genome and its suggested allopolyploid origin, the results obtained in this study confirm earlier reports that polyploids can easily withstand the loss of a certain amount of DNA, and that there is a slight tendency towards diminished haploid nuclear DNA content with increased polyploidy.
Genotyping of 2 well-known weevil species from the genus Ceutorhynchus (Coleoptera: Curculionidae) distributed in west Palearctic, C. erysimi and C. contractus, revealed phenotype versus genotype inconsistencies in a set of 56 specimens (25 C. erysimi and 31 C. contractus) collected from 25 locations in Serbia and Montenegro. An analysis of the mitochondrial cytochrome oxidase subunit I gene (COI), widely used as a barcoding region, and a nuclear gene, elongation factor-1α (EF-1α), revealed stable genetic divergence among these species. The average uncorrected pairwise distances for the COI and EF-1α genes were 3.8%, and 1.3%, respectively, indicating 2 genetically well-segregated species. However, the genetic data were not congruent with the phenotypic characteristics of the studied specimens. In the first place, C. erysimi genotypes were attached to specimens with phenotypic characteristics of C. contractus. Species-specific PCR-RFLP assays for the barcoding gene COI were applied for the molecular identification of 101 additional specimens of both morphospecies (33 C. erysimi and 68 C. contractus) and were found to confirm this incongruity. The discrepancy between the genetic and morphological data raises the question of the accuracy of using a barcoding approach, as it may result in misleading conclusions about the taxonomic position of the studied organism. Additionally, the typological species concept shows considerable weakness when genetic data are not supported with phenotypic characteristics as in case of asymmetric introgression, which may cause certain problems, especially in applied studies such as biological control programs in which the biological properties of the studied organisms are the main focus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.