A third of patients with paraganglial tumors, pheochromocytoma, and paraganglioma, carry germline mutations in one of the susceptibility genes, RET, VHL, NF1, SDHAF2, SDHA, SDHB, SDHC, SDHD, TMEM127, and MAX. Despite increasing importance, data for long-term prognosis are scarce in pediatric presentations. The European-American-PheochromocytomaParaganglioma-Registry, with a total of 2001 patients with confirmed paraganglial tumors, was the platform for this study. Molecular genetic and phenotypic classification and assessment of gene-specific long-term outcome with second and/or malignant paraganglial tumors and life expectancy were performed in patients diagnosed at !18 years. Of 177 eligible registrants, 80% had mutations, 49% VHL, 15% SDHB, 10% SDHD, 4% NF1, and one patient each in RET, SDHA, and SDHC. A second primary paraganglial tumor developed in
Multiple genes and their variants that lend susceptibility to many diseases will play a major role in clinical routine. Genetics-based cost reduction strategies in diagnostic processes are important in the setting of multiple susceptibility genes for a single disease. Head and neck paraganglioma (HNP) is caused by germline mutations of at least three succinate dehydrogenase subunit genes (SDHx). Mutation analysis for all 3 costs fUS$2,700 per patient. Genetic classification is essential for downstream management of the patient and preemptive management of family members. Utilizing HNP as a model, we wanted to determine predictors to prioritize the most heritable clinical presentations and which gene to begin testing in HNP presentations, to reduce costs of genetic screening. Patients were tested for SDHB, SDHC, and SDHD intragenic mutations and large deletions. Clinical parameters were analyzed as potential predictors for
Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I–III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies.
Purpose: Six pheochromocytoma susceptibility genes causing distinct syndromes have been identified; approximately one of three of all pheochromocytoma patients carry a predisposing germline mutation. When four major genes (VHL, RET, SDHB, SDHD) are analyzed in a clinical laboratory, costs are ∼$3,400 per patient. The aim of the study is to systematically obtain a robust algorithm to identify who should be genetically tested, and to determine the order in which genes should be tested. Experimental Design: DNA from 989 apparently nonsyndromic patients were scanned for germline mutations in the genes VHL, RET, SDHB, SDHC, and SDHD. Clinical parameters were analyzed as potential predictors for finding mutations by multiple logistic regression, validated by bootstrapping. Cost reduction was calculated between prioritized gene testing compared with that for all genes. Results: Of 989 apparently nonsyndromic pheochromocytoma cases, 187 (19%) harbored germline mutations. Predictors for presence of mutation are age <45 years, multiple pheochromocytoma, extra-adrenal location, and previous head and neck paraganglioma. If we used the presence of any one predictor as indicative of proceeding with gene testing, then 342 (34.6%) patients would be excluded, and only 8 carriers (4.3%) would be missed. We were also able to statistically model the priority of genes to be tested given certain clinical features. E.g., for patients with prior head and neck paraganglioma, the priority would be SDHD>SDHB>RET>VHL. Using the clinical predictor algorithm to prioritize gene testing and order, a 44.7% cost reduction in diagnostic process can be achieved. Conclusions: Clinical parameters can predict for mutation carriers and help prioritize gene testing to reduce costs in nonsyndromic pheochromocytoma presentations. (Clin Cancer Res 2009;15(20):6378-85)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.