This paper presents a new approach for relatively accurate brain region of interest (ROI) detection from dynamic susceptibility contrast (DSC) perfusion magnetic resonance (MR) images of a human head with abnormal brain anatomy. Such images produce problems for automatic brain segmentation algorithms, and as a result, poor perfusion ROI detection affects both quantitative measurements and visual assessment of perfusion data. In the proposed approach image segmentation is based on CUSUM filter usage that was adapted to be applicable to process DSC perfusion MR images. The result of segmentation is a binary mask of brain ROI that is generated via usage of brain boundary location. Each point of the boundary between the brain and surrounding tissues is detected as a change-point by CUSUM filter. Proposed adopted CUSUM filter operates by accumulating the deviations between the observed and expected intensities of image points at the time of moving on a trajectory. Motion trajectory is created by the iterative change of movement direction inside the background region in order to reach brain region, and vice versa after boundary crossing. Proposed segmentation approach was evaluated with Dice index comparing obtained results to the reference standard. Manually marked brain region pixels (reference standard), as well as visual inspection of detected with CUSUM filter usage brain ROI, were provided by experienced radiologists. The results showed that proposed approach is suitable to be used for brain ROI detection from DSC perfusion MR images of a human head with abnormal brain anatomy and can, therefore, be applied in the DSC perfusion data analysis.
Background. Images with abnormal brain anatomy produce problems for automatic segmentation techniques, and as a result poor ROI detection affects both quantitative measurements and visual assessment of perfusion data. Objective. This paper presents a new approach for fully automated and relatively accurate ROI detection from dynamic susceptibility contrast perfusion magnetic resonance and can therefore be applied excellently in the perfusion analysis. Methods. In the proposed approach the segmentation output is a binary mask of perfusion ROI that has zero values for air pixels, pixels that represent non-brain tissues, and cerebrospinal fluid pixels. The process of binary mask producing starts with extracting low intensity pixels by thresholding, which subsequently correspond to zero values of the mask. Optimal low-threshold value is solved by obtaining intensity pixels information from the approximate anatomical brain location. Holes filling algorithm and binary region growing algorithm are used to remove falsely detected regions and produce region of only brain tissues. Further, CSF pixels extraction is provided by thresholding of high intensity pixels from region of only brain tissues. Each time-point image of the perfusion sequence is used for adjustment of CSF pixels location. Results. The segmentation results were compared with the manual segmentation performed by experienced radiologists, considered as the reference standard for evaluation of proposed approach. On average of 120 images the segmentation results have a good agreement with the reference standard with a Dice Index of 0.9576 ± 0.013 (sensitivity and specificity are 0.9931 ± 0.0053 and 0.9730 ± 0.0111 respectively). All detected perfusion ROIs were deemed by two experienced radiologists as satisfactory enough for clinical use. Conclusions. The results show that proposed approach is suitable to be used for perfusion ROI detection from DSC head scans. Segmentation tool based on the proposed approach can be implemented as a part of any automatic brain image processing system for clinical use.
Background. The brain perfusion ROI detection being a preliminary step, designed to exclude non-brain tissues from analyzed DSC perfusion MR images. Its accuracy is considered as the key factor for delivering correct results of perfusion data analysis. Despite the large variety of algorithms developed on brain tissues segmentation, there is no one that works reliably and robustly on T2-weighted MR images of a human head with abnormal brain anatomy. Therefore, thresholding method is still the state-of-the-art technique that is widely used as a way of managing pixels involved in brain perfusion ROI in modern software applications for perfusion data analysis. Objective. This paper presents the analysis of effectiveness of thresholding techniques in brain perfusion ROI detection on T2-weighted MR images of a human head with abnormal brain anatomy. Methods. Four threshold-based algorithms implementation are considered: according to Otsu method as global thresholding, according to Niblack method as local thresholding, thresholding in approximate anatomical brain location, and brute force thresholding. The result of all algorithms is images with pixels' values changed to zero for background regions (air pixels and pixels that represent non-brain tissues) and original values for foreground regions (brain perfusion ROIs). The analysis is done using comparison of qualitative perfusion maps produced from thresholded images and from the reference ones (manual brain tissues delineation by experienced radiologists). The same DSC perfusion MR datasets of a human head with abnormal brain anatomy from 12 patients with cerebrovascular disease are used for comparison. Results. Pearson correlation analysis showed strong positive (r was ranged from 0.7123 to 0.8518, p < 0.01) and weak positive (r < 0.35, p < 0.01) relationship in case of conducted experiments with CBF, CBV, MTT and Tmax perfusion maps, respectively. Linear regression analysis showed at level of 95 % confidence interval that perfusion maps produced from thresholded images were subject to scale and offset errors in all conducted experiments. Conclusions. The experimental results showed that widely used thresholding methods are an ineffective way of managing pixels involved in brain perfusion ROI. Thresholding as brain segmentation tool can lead to poor placement of perfusion ROI and, as a result, produced perfusion maps will be subject to artifacts and can cause falsely high or falsely low perfusion parameter assessment.
Об'єктом дослідження даної роботи є якість перфузійної CBV мапи з огляду визначення області перфузії як ключового компонента в процесі обробки зображень перфузійної динамічно-сприйнятливої контрастної магнітно-резонансної томографії голови людини. CBV мапа загальновизнана як найкраща для визначення локалізації та розмірів зони ураження при інсульті і в оцінюванні ангіогенезу пухлин головного мозку. Низька якість цієї мапи може спричинити хибні результати як кількісних розрахунків, так і візуальної оцінки церебрального об'єму крові.Вплив визначення області перфузії на якість CBV мап був проаналізований шляхом порівняння мап, що були отримані із зображень після застосування порогової фільтрації та з еталонних зображень від 12 пацієнтів із цереброваскулярними захворюваннями. Область перфузії головного мозку була визначена вилученням пікселів низької (ділянки повітря та екстрацеребральних тканин) та високої (ділянки спинно мозкової рідини) інтенсивності. Мапи були отримані методом визначення площі під кривою та методом деконволюції.Для обох методів мапи, що порівнювалися, мали сильний позитивний взаємозв'язок за даними кореляційного аналізу Пірсона: r = 0,8752 та r = 0,8706 для методу визначення площі під кривою та методу деконволюції відповідно, p < 2,2·10 -16 . Незважаючи на це, для обох методів діаграми розсіювання мали точки, пов'язані з втраченими зонами кровопостачання, а лінії регресії вказували на наявність помилок масштабу і зсуву для мап, що були отримані із зображень після застосування порогової фільтрації.Отримані результати вказують на те, що порогова фільтрація є неефективним способом визначення області перфузії головного мозку, використання якого може спричиняти погіршення якості CBV мапи. Визначення області перфузії має бути стандартизоване та додане до протоколів перевірки нових систем аналізу перфузійних даних.Ключові слова: перфузійна динамічно-сприйнятлива контрастна магнітно-резонансна томографія, церебральний об'єм крові, зона уваги, порогова фільтрація. Аlkhimova S.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.