We obtained exact-order estimates of the best approximations of classes B Ω ∞, θ of periodic functions of many variables and for classes B ω p,θ , 1 ≤ p < ∞ of functions of one variable by trigonometric polynomials with corresponding spectra of harmonics in the metric of space B ∞,1. We also found exact orders for the Kolmogorov, linear and trigonometric widths of the same classes in space B ∞,1 .
In this paper, we continue the study of approximative characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojective widths of the classes $B^{\Omega}_{p,\theta}$ in the space $L_{q},$ $1\leq p<q<\infty,$ and also establish the exact-order estimates of approximation for these classes of functions in the space $L_{q}$ by using linear operators satisfying certain conditions.
We obtained the exact order estimates of the orthowidths and similar to them approximative characteristics of the Nikol'skii-Besov-type classes $B^{\Omega}_{p,\theta}$ of periodic functions of one and several variables in the space $B_{\infty,1}$. We observe, that in the multivariate case $(d\geq2)$ the orders of orthowidths of the considered functional classes are realized by their approximations by step hyperbolic Fourier sums that contain the necessary number of harmonics. In the univariate case, an optimal in the sense of order estimates for orthowidths of the corresponding functional classes there are the ordinary partial sums of their Fourier series. Besides, we note that in the univariate case the estimates of the considered approximative characteristics do not depend on the parameter $\theta$. In addition, it is established that the norms of linear operators that realize the order of the best approximation of the classes $B^{\Omega}_{p,\theta}$ in the space $B_{\infty,1}$ in the multivariate case are unbounded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.