Here we employ a novel method for preparing the homogeneous copper pyrophosphate nanocrystals inside silica mesopores. In order to characterize and identify synthesized nanocrystals we performed the ab initio studies of the α phase of Cu2P2O7. The electronic and crystal structure were optimized within the density functional theory with the strong electron interactions in the states on copper atoms and van der Waals corrections included in calculations. The relaxed lattice parameters and atomic positions agree very well with the results of the diffraction measurements for nanocrystalline copper pyrophosphates embedded inside SBA-15 silica pores. The obtained Mott insulating state with the energy gap of 3.17 eV exhibits the antiferromagnetic order with magnetic moments on copper atoms (0.8 ) that is compatible with the experimental studies. The phonon dispersion relations were obtained to study the dynamical properties of the Cu2P2O7 lattice and the element-specific atomic vibrations were analyzed using the partial phonon density of states. The calculated Raman spectrum revealed the consistency of typical bands of Cu2P2O7 with the experimental data. The investigation that combines a new synthesis of nanomaterials with the first-principles calculations is important for better characterization and understanding of the physical properties relevant for nanotechnological applications.
Theoretical calculations of the temperature-dependent magnetization in FeGd alloys were done with the use of Heisenberg-type atomistic spin Hamiltonian and Monte Carlo algorithms. The random allocation of atoms in the desired crystal structure was used for simulations of magnetically amorphous alloys. Performed calculations for the two different crystal structures have shown an important role of coordination number on the observed critical temperature and compensation point. Moreover, the value of the exchange interaction between Fe and Gd sublattices plays a key role in the simulations—an increase in the Fe–Gd exchange constant provides an increase in critical temperature for each concentration of elements, which explains the higher temperature stabilization of Gd moments. It was shown that obtained temperature-dependent magnetization behavior is consistent with experimental observations, which confirms the applicability of the atomic model used to study FeGd or other magnetic alloy structures.
Cylindrical ferromagnetic nanowires are of particular interest in nanomaterials science due to various manufacturing methods and a wide range of applications in nanotechnology, with special attention given to those with diameters less than the single domain limit. In the current study, the simulations of magnetic properties of isolated iron nanowires with a diameter of 5 nm and various aspect ratios, as well as two types of arrays of such nanowires (with hexagonal and square arrangement), were performed using atomistic spin model. In the case of a single nanowire, change of coercive field for different applied field directions with aspect ratio was discussed. It was shown that the evolution of the magnetization reversal mechanism from coherent rotation to domain wall propagation appears with increasing length of single nanowire. For the arrays of cylindrical nanostructures, it was revealed that different number of nearest neighbors for each nanostructure in square and hexagonal arrays have an influence on their magnetostatic interactions, which are the most significant for shortest interwire distances. The corresponding spin configurations during the remagnetization process showed the appearance of intermediate magnetization states (when a part of wires is magnetized parallel and part antiparallel to the field direction), connected with Barkhausen effect, which influence the observed hysteresis curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.