Studies of adsorption and desorption of pesticides by soils are important for understanding and predicting their fate and transmission in the environment. Considering the agricultural and environmental relevance of clomazone, its sorption-desorption behaviour was studied in two widespread Serbian agricultural soil types named Regosol and Chernozem. Both phenomena are well-described by the Freundlich equation, which shows that clomazone is generally sorbed more to organic matter than to the mineral soil fractions. Chernozem, a soil containing more of both organic matter and clay, was found to bind more, and desorb less herbicide, than Regosol. Higher desorption hysteresis obtained for Chernozem could be attributed to its larger number of high-energy sorption sites, compared to Regosol. In both soils, the hysteresis effect increases with the rise of initial clomazone concentration in the soil-water system, while the percentage of desorbed amount during successive desorption cycles decreases. The presented adsorption-desorption study shows that soil composition plays an important role in clomazone behaviour and fate in the environment, and a significantly reduced probability of contamination of both the deeper soil layers and groundwater may be expected when this herbicide is found in humus-rich soils.
Kinetic studies are important for understanding the parameters and processes involved in pesticides sorption to soil. Considering clomazone agricultural and environmental relevance, its sorption kinetics was studied in four agricultural...
According to the Serbian official soil classification system, Rendzina is a soil type with an A-AC-C-R profile, developed on parent rock containing more than 20% of calcareous material (except soils with an A-R profile on hard pure limestone or dolomite). Previous investigations have shown that 29 Rendzina soil profiles from Serbia belong to the reference soil groups (RSGs) of Leptosols, Regosols and Phaeozems according to the World Reference Base for Soil Resources (WRB 2015). The present study addresses the correlations among three WRB RSGs in terms of soil texture, mean weight diameter (MWD), total N content, and humus fractional composition using Principal Component Analysis (PCA). The objective is to better understand the mutual relationship between the classification soil units used in Serbia and the international WRB system. The results show that PCA cannot unequivocally distinguish between these three RSGs. Leptosols and Regosols are highly incoherent groups while the group of Phaeozems is highly coherent, leading to the conclusion that the physical and chemical properties of the soil profiles of Phaoeozems are specific. It is obvious that soil depth and color, which are the overriding factors in the differentiation of Rendzina soils into three WRB RSGs, had no significant effect on these properties. The results further show that soil properties such as texture, MWD, humus fractional composition, etc. cannot be used to correlate Rendzina soils from Serbia with WRB. Instead, careful correlation of individual soil profiles is needed based on quantitative soil data analysis as required by WRB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.