Green synthesis of silver-containing nanocomposites based on polylactide (PLA) was carried out in two ways. With the use of green tea extract, Ag+ ions were reduced to silver nanoparticles with their subsequent introduction into the PLA (mechanical method) and Ag+ ions were reduced in the polymer matrix of PLA-AgPalmitate (PLA-AgPalm) (in situ method). Structure, morphology and thermophysical properties of nanocomposites PLA-Ag were studied by FTIR spectroscopy, wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) methods. The antimicrobial, antiviral, and cytotoxic properties were studied as well. It was found that the mechanical method provides the average size of silver nanoparticles in the PLA of about 16 nm, while in the formation of samples by the in situ method their average size was 3.7 nm. The strong influence of smaller silver nanoparticles (3.7 nm) on the properties of nanocomposites was revealed, as with increasing nanosilver concentration the heat resistance and glass transition temperature of the samples decreases, while the influence of larger particles (16 nm) on these parameters was not detected. It was shown that silver-containing nanocomposites formed in situ demonstrate antimicrobial activity against gram-positive bacterium S. aureus, gram-negative bacteria E. coli, P. aeruginosa, and the fungal pathogen of C. albicans, and the activity of the samples increases with increasing nanoparticle concentration. Silver-containing nanocomposites formed by the mechanical method have not shown antimicrobial activity. The relative antiviral activity of nanocomposites obtained by two methods against influenza A virus, and adenovirus serotype 2 was also revealed. The obtained nanocomposites were not-cytotoxic, and they did not inhibit the viability of MDCK or Hep-2 cell cultures.
Nanosized composites CeO2–Ag, La2O3–Ag, and TiO2–Ag are a class of nanomaterials suitable for photocatalysis, optical devices, and photoelectrochemical elements. Further, nanocomposites with several wt.% of silver can be used as creating materials for pathogenic virus inactivation with pandemic-neutralizing potential. Thus, CeO2–Ag, La2O3–Ag, and TiO2–Ag nanocomposites are prospective materials due to their optical and biological activity. In the present work, CeO2–Ag, La2O3–Ag, and TiO2–Ag nanocomposites were synthesized by the co-precipitation method. The morphological and optical properties and the structure of the prepared nanocomposites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with EDX, and nitrogen adsorption-desorption based on BET, Raman spectroscopy, and photoluminescence (PL). Both oxide matrixes corresponded to the cubic crystal lattice with the inclusion of argentum into the crystal lattice of oxides at relative low c(Ag) and reduction of silver on particle surface at 5 wt.% Ag and greater. The CeO2, TiO2, and La2O3 with a concentration of 4 wt.% Ag inhibited the growth processes of prokaryotic cells of E. coli, Bacillus sp., and S. aureus compared to pure oxides. Influenza A virus and herpes completely suppressed reproduction by nanocomposites of CeO2–Ag (2, 5 wt.%) and La2O3–Ag (2, 5 wt.%) action.
As of today, influenza viruses remain a relevant target for the development of antiviral compounds due to their rapid evolution and acquisition of the resistance to existing drugs. Fullerene derivatives have already shown the ability to successfully interact with viruses, and polyhydrated fullerenes (or fullerenols) are particularly attractive due to their compatibility with biological fluids and low toxicity. Therefore, the goal of this work was to study the effect of two batches of a mixture of polyhydrated fullerenes with a mass ratio of 78.1% C60/C70 and 21.9% C76/C78/C84 on the influenza A (H1N1) virus. It was determined that the mixture of fullerenols, along with the low toxicity, showed high antiviral activity with a decrease in the viral infectious titer up to 4 orders of magnitude. In addition, studied fullerenols did not affect the hemagglutination process and did not show any significant prophylactic activity. With the help of molecular docking and molecular dynamics simulation, the likely target of fullerenols' action was determined—the binding site of the RNA primer of the viral RNA-dependent RNA polymerase. Therefore, we assume that the high antiviral effect of polyhydrated fullerenes on influenza A virus is related to their interaction with the viral RNA polymerase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.