Extreme weather is in the attention focus of many scientists and managers during the last decades. The leading aspect of these phenomena investigations in the recent years is the risk of material and human losses and damage mitigation. Especially, the interest is with regard to effects of weather extremities on natural systems and social processes such as land use practices, water resources management, emergency management, and planning. The main objectives of the investigations are clarifying of spectrum, space and time regularities of extreme weather events occurring in Ukraine as well as their intensity, duration, daily and seasonal variation, spreading, recurrence in the regions, and their changes analyzed. Applying statistical and geographical space-time analyses, the main regularities of the extreme weather events' occurrence have been described as well as the trends and intensity of the extreme weather regime changes in Ukraine have been calculated and assessed.
X-ray phase and thermogravimetric analysis, scanning electron microscopy and energy-dispersion spectroscopy were used to study the products of phase formation during the precipitation of lanthanum and cerium salts in the presence of silver nitrate and recipients of precipitators, nucleating agents and hydrolysis regulators. Thermogravimetric analysis shows the completion of the La(OH)3 lattice dehydroxylation process at a temperature of ~ 300 °С and probable destruction of sulfates at a temperature of ~ 340 °С. The phase interaction of lanthanum oxide(III) with silver ends at T ~ 400 °C. The DTG curve shows a two-stage weight loss, which characterizes the destruction of lanthanum and silver hydroxides (250 °C) and the removal of sulfates (~ 340 °C), respectively. According to the TG, the total weight loss is 21.6 %. For the cerium-containing system the only endothermic effect of dehydroxylation of cerium hydroxide at T = 250 °C with its conversion into cerium dioxide is observed. The destruction of nitrates (anionic component of solutions) takes place at the temperature of 400 °C. Weight loss takes place at T = 150 °C and is 53.9 %. Thus, on the basis of TG-DTA data, it can be assumed that the formation of composites particles based on lanthanum and cerium oxides, modified with silver, ends at the temperature of 400 °C. The X-ray diffraction data shows that at the initial stage the system undergoes the formation of cerium and lanthanum hydroxides, and during lyophilization of the precipitate (T = 160 °C) the crystal lattice of hydroxides partial dehydroxylation takes place with the formation of trigonal oxides La2O3 and Ce2O3. It has been found that the presence of silver cations in the solution can affect the phase composition of lyophilized structures and the formation of the CeO2 phase. It is shown that the hydroxylamine chloride injection into the system can initiate the silver restoration on the lanthanum oxide surface and also partially restore it to the LaO phase. Temperature treatment of the samples (T = 400 °С) promotes homogenization of the precipitate composition: formation of 30 nm cerium dioxide particles with silver clusters evenly distributed on its surface, and hexagonal lanthanum oxide plates with individual silver particles as the second phase. In three-component systems, two modifications of lanthanum oxides (trigonal and cubic), cerium dioxide and metallic silver are formed. It is found that the chemical composition of the precipitates contains the main elements – La, Ce, O, Ag and impurity – S or Cl, as the anionic component of the initial solutions, N and K in the composition of the initial suspension. It is shown that the morphology of the samples is represented by hexagonal structures of lanthanum hydroxide and oxide, spherical and pseudocubic particles of cerium dioxide and lanthanum oxide, spherical clusters of silver.
Nanosized composites CeO2–Ag, La2O3–Ag, and TiO2–Ag are a class of nanomaterials suitable for photocatalysis, optical devices, and photoelectrochemical elements. Further, nanocomposites with several wt.% of silver can be used as creating materials for pathogenic virus inactivation with pandemic-neutralizing potential. Thus, CeO2–Ag, La2O3–Ag, and TiO2–Ag nanocomposites are prospective materials due to their optical and biological activity. In the present work, CeO2–Ag, La2O3–Ag, and TiO2–Ag nanocomposites were synthesized by the co-precipitation method. The morphological and optical properties and the structure of the prepared nanocomposites were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with EDX, and nitrogen adsorption-desorption based on BET, Raman spectroscopy, and photoluminescence (PL). Both oxide matrixes corresponded to the cubic crystal lattice with the inclusion of argentum into the crystal lattice of oxides at relative low c(Ag) and reduction of silver on particle surface at 5 wt.% Ag and greater. The CeO2, TiO2, and La2O3 with a concentration of 4 wt.% Ag inhibited the growth processes of prokaryotic cells of E. coli, Bacillus sp., and S. aureus compared to pure oxides. Influenza A virus and herpes completely suppressed reproduction by nanocomposites of CeO2–Ag (2, 5 wt.%) and La2O3–Ag (2, 5 wt.%) action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.