In the star-formation process, the vital impact of environmental factors such as feedback from massive stars and stellar density on the form of the initial mass function (IMF) at the low-mass end is yet to be understood. Hence a systematic highly sensitive observational analysis of a sample of regions under diverse environmental conditions is essential. We analyse the IMF of eight young clusters (<5 Myr), namely IC 1848-West, IC 1848-East, NGC 1893, NGC 2244, NGC 2362, NGC 6611, Stock 8, and Cygnus OB2, which are located at the Galactocentric distance (Rg) range ∼6–12 kpc along with the nearby cluster IC 348 using deep near-IR photometry and Gaia DR2. These clusters are embedded in massive stellar environments of radiation strength $\log(L_\mathrm{FUV}/\mathrm{L}_{\odot })\, \sim 2.6$–6.8, $\log(L_\mathrm{EUV})\, \sim$ 42.2–50.85 photon s−1, with stellar density in the range of ∼170–1220 star pc−2. After structural analysis and field decontamination we obtain an unbiased uniformly sensitive sample of pre-main-sequence members of the clusters down to the brown-dwarf regime. The lognormal fit to the IMF of nine clusters gives the mean characteristic mass (mc) and σ of 0.32 ± 0.02 M⊙ and 0.47 ± 0.02, respectively. We compare the IMF with that of low- and high-mass clusters across the Milky Way. We also check for any systematic variation with respect to the radiation field strength and the stellar density as well with Rg. We conclude that there is no strong evidence for an environmental effect in the underlying form of the IMF of these clusters.
A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveal the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map show the coexistence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel PACS and SPIRE data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810 -4600 M and 1.0 -1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation timescales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the MALT90 survey is used to understand the nature of two clumps which show signatures of expansion of CS51.
The processes that regulate star formation within molecular clouds are still not well understood. Various star formation scaling relations have been proposed as an explanation, one of which is to formulate a relation between the star formation rate surface density $\rm \Sigma _{SFR}$ and the underlying gas surface density $\rm \Sigma _{gas}$. In this work, we test various star formation scaling relations, such as the Kennicutt–Schmidt relation, the volumetric star formation relation, the orbital time model, the crossing time model and the multi free-fall time-scale model, towards the North American Nebula and Pelican Nebula and in the cold clumps associated with them. Measuring stellar mass from young stellar objects and gaseous mass from CO measurements, we estimate the mean $\rm \Sigma _{SFR}$, the star formation rate per free-fall time and the star formation efficiency for clumps to be 1.5 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.009 and 2.0 per cent, respectively, while for the whole region covered by both nebulae (which we call the ‘NAN’ complex) the values are 0.6 $\rm M_{\odot}\, yr^{-1}\, kpc^{-2}$, 0.0003 and 1.6 per cent, respectively. For the clumps, we notice that the observed properties are in line with the correlation obtained between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$, and between $\rm \Sigma _{SFR}$ and $\rm \Sigma _{gas}$ per free-fall time and orbital time for Galactic clouds. At the same time, we do not observe any correlation with $\rm \Sigma _{gas}$ per crossing time and multi free-fall time. Even though we see correlations in the former cases, however, all models agree with each other within a factor of 0.5 dex. It is not possible to discriminate between these models because of the current uncertainties in the input observables. We also test the variation of $\rm \Sigma _{SFR}$ with the dense gas but, because of low statistics, a weak correlation is seen in our analysis.
An investigation in radio and infrared wavelengths of two high-mass star forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India is detected towards both the regions. These regions are estimated to be ionized by early B to late O type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects associated with these regions. A Class I/II type source, with an estimated mass of 6.2 M ⊙ , lies ∼ 7 ′′ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 µm image. The masses and linear diameter of these range between ∼ 300 -1600 M ⊙ and 0.2 -1.1 pc, respectively which qualifies them as high-mass star forming clumps. Modelling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive young stellar objects possibly in the accelerating accretion phase. Further, based on the radio and MIR morphology, the occurrence of a possible bow-wave towards the likely ionizing star is explored.Subject headings: stars: formation -ISM: HII region -ISM -radio continuum -ISM: individual objects (S10 -IRAS 17036-4033): individual objects (G345.99-0.02)
We have mapped HCN and HCO+ (J = 1 → 0) line emission toward a sample of seven star-forming regions (with 12 + log [ O / H ] ranging from 8.34 to 8.69) in the outer Milky Way (Galactocentric distance >9.5 kpc), using the 14 m radio telescope of the Taeduk Radio Astronomy Observatory. We compare these two molecular lines with other conventional tracers of dense gas, millimeter-wave continuum emission from dust and extinction thresholds (A V ≥ 8 mag), inferred from the 13CO line data. HCN and HCO+ correlate better with the millimeter emission than with the extinction criterion. A significant amount of luminosity comes from regions below the extinction criterion and outside the millimeter clump for all the clouds. The average fraction of HCN luminosity from within the regions with A V ≥ 8 mag is 0.343 ± 0.225; for the regions of millimeter emission, it is 0.478 ± 0.149. Based on a comparison with column density maps from Herschel, HCN and HCO+ trace dense gas in high column density regions better than does 13CO. HCO+ is less concentrated than HCN for outer Galaxy targets, in contrast with the inner Galaxy sample, suggesting that metallicity may affect the interpretation of tracers of dense gas. The conversion factor between the dense gas mass (M dense) and line luminosities of HCN and HCO+, when integrated over the whole cloud, is comparable to factors used in extragalactic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.