SUMMARYA methodology is introduced for rapid reduced-order solution of stochastic partial differential equations. On the random domain, a generalized polynomial chaos expansion (GPCE) is used to generate a reduced subspace. GPCE involves expansion of the random variable as a linear combination of basis functions defined using orthogonal polynomials from the Askey series. A proper orthogonal decomposition (POD) approach coupled with the method of snapshots is used to generate a reduced solution space from the space spanned by the finite element basis functions on the spatial domain. POD methods have been extremely popular in fluid mechanics applications and have subsequently been applied to other interesting areas. They have been shown to be capable of representing complicated phenomena with a handful of degrees of freedom. This concurrent model reduction on the random and spatial domains is applied to stochastic partial differential equations (PDEs) in natural convection processes involving randomness in the porosity of the medium and the Rayleigh number. The results indicate that owing to the multiplicative nature of the concurrent model reduction, extremely large computational gains are realized without significant loss of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.