BALASUBRAMANIAN NAGARAJAN, SYLVIE CASTAGNE, SWAMINATHAN ANNAMALAI, ZHENG FAN, and WAI LUEN CHAN Eddy current spectroscopy is one of the promising non-destructive methods for residual stress evaluation along the depth of subsurface-treated nickel-base superalloys, but it is limited by its sensitivity to microstructure. This paper studies the influence of microstructure on the electrical conductivity of two nickel-base alloys, RR1000 and IN100. Different microstructures were attained using heat treatment cycles ranging from solution annealing to aging, with varying aging time and temperature. Eddy current conductivity was measured using conductivity probes of frequencies ranging between 1 and 5 MHz. Qualitative and quantitative characterization of the microstructure was performed using optical and scanning electron microscopes. For the heat treatment conditions between the solution annealing and the peak aging, the electrical conductivity of RR1000 increased by 6.5 pct, which is duly substantiated by the corresponding increase in hardness (12 pct) and the volume fraction of c¢ precipitates (41 pct). A similar conductivity rise of 2.6 pct for IN100 is in agreement with the increased volume fraction of c¢ precipitates (12.5 pct) despite an insignificant hardening between the heat treatment conditions. The observed results with RR1000 and IN100 highlight the sensitivity of electrical conductivity to the minor microstructure variations, especially the volume fraction of c¢ precipitates, within the materials.
Abstract. Non-destructive measurement of residual stress at the subsurface of nickel-based alloys using eddy current method has been limited by its sensitivity to its microstructure, especially to the precipitates. This paper investigates the effect of heat treatment on the electrical conductivity of RR1000, a nickel-based superalloy with a large fraction of J' precipitates. Different heat treatment conditions, ranging from solution heat treatment to precipitation hardening with different aging times and temperatures, are used to achieve varying initial microstructures. Hardness of the samples is measured first to quantify the heat treated samples followed by the measurement of electrical conductivity using the conductivity probes of frequencies between 1 MHz and 5 MHz. The relationship between the hardness and conductivity of the heat treated samples is then correlated further. The results highlight the significant influence of heat treatment on the sample hardness and the electrical conductivity of RR1000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.