Wind turbine noise is becoming a critical issue for many offshore and land-based wind projects. In this work, we analyzed trailing edge bluntness vortex shedding noise source for a land-based turbine of size 2 MW and blade span of 38 m using original Brooks Pope and Marcolini (BPM)and modified BPM noise model. A regression-based curve fitting approach has been implemented to predict the shape function in terms of thickness to chord ratio of aerofoils used for blade. For trailing edge height of 0.1% chord, computations for sound power level were done at wind speed of 8 m/s, 17 RPM. The results showed that present approach for thickness correction predicts the noise peak of ∼78dBA at f ∼ 10 kHz which is ∼15dBA lower than that predicted from original BPM. The results were also validated using experiment data from GE 1.5sle, Siemens 2.3 MW turbines with blade lengths between 78 m and 101 m which agreed within 2% at high frequencies, f > 5 kHz. In addition, results from present approach for trailing edge bluntness noise agreed well with modified BPM by Wei et al. at high frequencies, f ∼ 10 kHz where it becomes dominant. The slope of noise curves from present approach, and modified BPM methods are lower when compared with original BPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.