SUMMARYGlobal rise in male infertility over the past decades as a result of falling sperm count and quality has been pointed out by different investigations. Therefore, it is important to understand the molecular mechanism of spermatogenesis and its regulation. Mammalian spermatogenesis, a streamlined process through which male germline cells divide and differentiate into mature spermatozoa, is strictly regulated by phase-specific gene expression which, in turn, is controlled by myriads of regulatory non-coding RNAs (ncRNAs). Rapid advancement in genome mining technologies has identified role of ncRNAs including microRNAs, PIWI-interacting RNAs, endogenous small-interfering RNAs and long non-coding RNAs as controller of gene expression at transcriptional as well as post-transcriptional level in different biological context and disease processes. Here, we discuss the recent progress in our understanding about the involvement of these molecules in spermatogenesis. In addition, we describe here the possible roles of long noncoding RNAs in controlling this process which is not delved so far.
Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10−6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.
Hemoglobin (Hb) is a major protein involved in transport of oxygen (O2). It consists of Hb-α and Hb-β subunits, which are normally expressed by cells of erythroid lineage. However, till recently, it was not known whether non-erythroid cells like vaginal cells synthesize Hb and whether it has any functional significance. Therefore, we designed the following objectives: (1) to establish in-vitro culture system of human primary vaginal epithelial cells (hPVECs), (2) to determine whether Hb-α and Hb-β proteins are truly synthesized by hPVECs, (3) to evaluate the effect of LPS (lipopolysaccharide) on the expression of Hb-α and Hb-β proteins (4) to decipher the significance of the Hb-α and Hb-β expression in hPVECs and (5) to determine the molecular mechanism regulating the expression of Hb-α in hPVECs. To accomplish these studies, we applied a battery of assays such as RT-PCR, qRT-PCR, Flow cytometry, western blot, and immunofluorescence, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). The results revealed the expression of Hb-α and Hb-β at both mRNA and protein level in hPVECs. The expression was significantly upregulated following LPS treatment (10μg/ml for 6 hrs) and these results are comparable with the expression induced by LPS in human vaginal epithelial cell line (VK2/E6E7). These cells constitutively produced low levels of pro-inflammatory (IL-6) and anti-inflammatory (IL-10) cytokines. Also, the response of phosphorylated (p65)-NF-κB to LPS was upregulated with increased expression of IL-6, Toll-like receptor-4 (TLR4) and human beta defensin-1 (hBD-1) in hPVECs and VK2/E6E7 cells. However, Bay 11–7082 treatment (5μM for 24 hrs) could neutralize the effect of LPS-induced p65-NF-κB activity and represses the production`of Hb-α and Hb-β. The results of EMSA revealed the presence of putative binding sites of NF-κB in the human Hb-α promoter region (nt-115 to -106). ChIP analysis confirmed the binding of NF-κB to Hb-α promoter. In conclusion, the present findings revealed for the first time that hPVECs synthesized Hb-α and Hb-β and the expression is comparable with the expression of VK2/E6E7 cells. The identification of NF-κB regulatory sequences in Hb-α promoter, whose activation is associated with immune response of hPVECs, indicating Hb-α and Hb-β may act as an endogenous antimicrobial defense protein against vaginal inflammation/infections.
The results revealed for the first time that Hb-α and Hb-β were induced by oxidative stress through the activation of Nrf2. Overexpression of Hb-α and Hb-β ameliorated H O -induced oxidative stress, indicating one of the possible mechanism(s) to protect hPVECS from oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.