Allogeneic hematopoietic stem cell transplantation is curative in myelofibrosis, and current prognostic scoring systems aim to select patients for transplantation. Here, we aimed to develop a prognostic score to determine prognosis after transplantation itself, using clinical, molecular, and transplant-specific information from a total of 361 patients with myelofibrosis. Of these, 205 patients were used as a training cohort to create a clinical-molecular myelofibrosis transplant scoring system (MTSS), which was then externally validated in a cohort of 156 patients. Multivariable analysis on survival identified age at least 57 years, Karnofsky performance status lower than 90%, platelet count lower than 150 × 109/L, leukocyte count higher than 25 × 109/L before transplantation, HLA-mismatched unrelated donor, ASXL1 mutation, and non-CALR/MPL driver mutation genotype being independent predictors of outcome. The uncorrected concordance index for the final survival model was 0.723, and bias-corrected indices were similar. Risk factors were incorporated into a 4-level MTSS: low (score, 0-2), intermediate (score, 3-4), high (score, 5), and very high (score, >5). The 5-year survival according to risk groups in the validation cohort was 83% (95% confidence interval [CI], 71%-95%), 64% (95% CI, 53%-75%), 37% (95% CI, 17%-57%), and 22% (95% CI, 4%-39%), respectively (P < .001). Increasing score was predictive of nonrelapse mortality (P < .001) and remained applicable to primary (0.718) and post-essential thrombocythemia (ET)/polycythemia vera (PV) myelofibrosis (0.701) improving prognostic ability in comparison with all currently available disease-specific systems. In conclusion, this MTSS predicts outcome of patients with primary and post-ET/PV myelofibrosis undergoing allogeneic stem cell transplantation.
Background Previous studies reporting the causes of death in patients with severe COVID-19 have provided conflicting results. The objective of this study was to describe the causes and timing of death in patients with severe COVID-19 admitted to the intensive care unit (ICU). Methods We performed a retrospective study in eight ICUs across seven French hospitals. All consecutive adult patients (aged ≥ 18 years) admitted to the ICU with PCR-confirmed SARS-CoV-2 infection and acute respiratory failure were included in the analysis. The causes and timing of ICU deaths were reported based on medical records. Results From March 1, 2020, to April 28, 287 patients were admitted to the ICU for SARS-CoV-2 related acute respiratory failure. Among them, 93 patients died in the ICU (32%). COVID-19-related multiple organ dysfunction syndrome (MODS) was the leading cause of death (37%). Secondary infection-related MODS accounted for 26% of ICU deaths, with a majority of ventilator-associated pneumonia. Refractory hypoxemia/pulmonary fibrosis was responsible for death in 19% of the cases. Fatal ischemic events (venous or arterial) occurred in 13% of the cases. The median time from ICU admission to death was 15 days (25th–75th IQR, 7–27 days). COVID-19-related MODS had a median time from ICU admission to death of 14 days (25th–75th IQR: 7–19 days), while only one death had occurred during the first 3 days since ICU admission. Conclusions In our multicenter observational study, COVID-19-related MODS and secondary infections were the two leading causes of death, among severe COVID-19 patients admitted to the ICU.
Background The aim of this study is to determine whether severe COVID-19 patients harbour a higher risk of ICU-acquired pneumonia. Methods This retrospective multicentre cohort study comprised all consecutive patients admitted to seven ICUs for severe COVID-19 pneumonia during the first COVID-19 surge in France. Inclusion criteria were laboratory-confirmed SARS-CoV-2 infection and requirement for invasive mechanical ventilation for 48 h or more. Control groups were two historical cohorts of mechanically ventilated patients admitted to the ICU for bacterial or non-SARS-CoV-2 viral pneumonia. The outcome of interest was the development of ICU-acquired pneumonia. The determinants of ICU-acquired pneumonia were investigated in a multivariate competing risk analysis. Result One hundred and seventy-six patients with severe SARS-CoV-2 pneumonia admitted to the ICU between March 1st and 30th June of 2020 were included into the study. Historical control groups comprised 435 patients with bacterial pneumonia and 48 ones with viral pneumonia. ICU-acquired pneumonia occurred in 52% of COVID-19 patients, whereas in 26% and 23% of patients with bacterial or viral pneumonia, respectively (p < 0.001). Times from initiation of mechanical ventilation to ICU-acquired pneumonia were similar across the three groups. In multivariate analysis, the risk of ICU-acquired pneumonia remained independently associated with underlying COVID-19 (SHR = 2.18; 95 CI 1.2–3.98, p = 0.011). Conclusion COVID-19 appears an independent risk factor of ICU-acquired pneumonia in mechanically ventilated patients with pneumonia. Whether this is driven by immunomodulatory properties by the SARS-CoV-2 or this is related to particular processes of care remains to be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.