Phenology has achieved a prominent position in current scenarios of global change research given its role in monitoring and predicting the timing of recurrent life cycle events. However, the implications of phenology to environmental conservation and management remain poorly explored. Here, we present the first explicit appraisal of how phenology -a multidisciplinary science encompassing biometeorology, ecology, and evolutionary biology -can make a key contribution to contemporary conservation biology. We focus on shifts in plant phenology induced by global change, their impacts on species diversity and plantanimal interactions in the tropics, and how conservation efforts could be enhanced in relation to plant resource organization. We identify the effects of phenological changes and mismatches in the maintenance and conservation of mutualistic interactions, and examine how phenological research can contribute to evaluate, manage and mitigate the consequences of land-use change and other natural and anthropogenic disturbances, such as fire, exotic and invasive species. We also identify cutting-edge tools that can improve the spatial and temporal coverage of phenological monitoring, from satellites to drones and digital cameras. We highlight the role of historical information in recovering long-term phenological time series, and track climate-related shifts in tropical systems. Finally, we propose a set of measures to boost the contribution of phenology to conservation science. We advocate the inclusion of phenology into predictive models integrating evolutionary history to identify species groups that are either resilient or sensitive to future climatechange scenarios, and understand how phenological mismatches can affect community dynamics, ecosystem services, and conservation over time. We hereby submit the revised draft of our 'Perspectives' manuscript entitled "Linking plant phenology to conservation biology" to which we now incorporate the rather minor changes suggested by the reviewers. While responding to those very positive comments, we also indicate how we have incorporated the reviewers' remarks. UNIVERSIDADE ESTADUAL PAULISTAWe thank you and the reviewers again for all the suggestions that have improved our The MS is well written, integrates interesting different aspects of plant phenology and provide a guide to include phenology in prospective long-term studies and management plans. Therefore the study is of general interest for a wide audience, particularly for Biological Conservation readers.Next, I suggest some changes to improve the current version of the MS 1. Authors comment the effect of climate and land use change on Section 4. For example, they argue that edge effect "increase of flowering and fruiting activity" (Line #389) or fragmentation affect reproductive success. Yet, these are functional responses of plant populations to different types of disturbances/changes, but they do not necessary entail changes in phenology. Please, review the MS and make sure that you only include ...
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.
Bastin et al.’s estimate (Reports, 5 July 2019, p. 76) that tree planting for climate change mitigation could sequester 205 gigatonnes of carbon is approximately five times too large. Their analysis inflated soil organic carbon gains, failed to safeguard against warming from trees at high latitudes and elevations, and considered afforestation of savannas, grasslands, and shrublands to be restoration.
Fire is a natural disturbance in savannas, and defines vegetation physiognomy and structure, often influencing species diversity. Fire activity is determined by a wide range of factors, including long and short term climatic conditions, climate seasonality, wind speed and direction, topography, and fuel biomass. In Brazil, fire shapes the structure and composition of cerrado savannas, and the impact of fire on vegetation dynamics is well explored, but the drivers of variation in fire disturbance across landscapes and over time are still poorly understood. We reconstructed 31 years of fire occurrence history in the Serra do Cipó region, a highly-diverse cerrado landscape, located in the southern portion of the Espinhaç o mountain range, state of Minas Gerais, Southeastern Brazil. We mapped burn scars using a time series of Landsat satellite images from 1984 to 2014. Our questions were 1) How does fire occurrence vary in time and space across the Serra do Cipó cerrado landscape? 2) Which climatic drivers may explain the spatial and inter-annual variation in fire occurrence on this landscape? 3) Is fire occurrence in this cerrado landscape moisture-limited or fuel-limited? We evaluated the inter-annual variation and distribution of burned areas, and used linear models to explain this variation in terms of rainfall amount (determinant of fuel load production), seasonal rainfall distribution (determinant of dry fuel availability), abnormality of precipitation (Standardized Precipitation Index-SPI), and vegetation type (Enhanced Vegetation Index-EVI). Contrary to our expectations, annual rainfall volume was weakly and negatively correlated with burned area, and the strongest predictor of burned area was drought during the ignition season. The length of the dry season and the distribution of rain along the season determined ignition probability, increasing fire occurrence during the driest periods. We conclude that the mountain cerrado vegetation at Serra do Cipó has a moisture-dependent fire regime, in contrast to the fuel-dependent fire regimes described for African savannas. These findings imply that savannas at different continents may have different recovery and resilience capabilities when subjected to changes in the fire regime, caused by direct anthropogenic activities or indirectly through climatic changes. The possible effects of these changes on cerrado landscapes are still unknown, and future studies should investigate if currently observed fire regimes have positive or negative impacts on vegetation diversity, recovery, resilience and phenology, thus helping managers to include fire management as conservation measure.
While phenology data (the timing of recurring biological events) has been used to explain and predict patterns related to global change, and to address applied environmental issues, it has not been clearly identified as pertinent for restoration. This opinion article thus aims to raise awareness of the potential of phenology to enhance the quality of restoration projects and ecological restoration theory. We based our analysis on a systematic literature survey carried out in February 2014, searching the words “phenology” or “phenological” in books dealing with restoration, the term “phenolog*” in the journal Restoration Ecology, and the terms “restoration” and “phenolog*” in the database Web of Science until February 2014. We finally selected 149 studies relevant to our goals, and first classified them according to the context in which phenology was addressed. We then analyzed them within the framework of the five key steps of restoration projects: (1) the reference ecosystem; (2) biotic resources; (3) restoration methods; (4) monitoring; and (5) adaptive management. The literature survey showed that phenological information improved decision‐making in the few restoration projects in which it was incorporated. We thus advocate taking phenological data into account at all stages of restoration when appropriate: from the acquisition of baseline data on the reference ecosystem to treatment design, and from restoration action planning and timing to monitoring. Phenological data should at minimum be collected for sown, keystone, dominant, and/or rare species to improve restoration quality. Phenology studies and monitoring should be promoted in future restoration guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.